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We present a simple and unifying picture that provides the energy and scattering length dependence for
all inelastic three-body collision rates in the ultracold regime for three-body systems with short-range two-
body interactions. Here, we present the scaling laws for vibrational relaxation, three-body recombination,
and collision-induced dissociation for systems that support s-wave two-body collisions. These systems
include three identical bosons, two identical bosons, and two identical fermions. Our approach reproduces
all previous results, predicts several others, and gives the general form of the scaling laws in all cases.
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The use of external magnetic fields to control the atomic
interactions in trapped ultracold quantum gases has proven
to be an extraordinary tool to explore different quantum
regimes. At low temperatures, only the two-body s-wave
scattering length a is needed to characterize the atomic
interactions and can assume practically any value from
—o0 to +oo by tuning a magnetic field near a diatomic
Feshbach resonance. This tunability has been used, for
instance, to convert fermionic atoms into weakly bound
bosonic molecules which, in some cases, were remarkably
long lived [1]. In the quantum degenerate regime, this
system provides a unique opportunity to explore the cross-
over between a Bose-Einstein condensate (BEC) of mole-
cules and the BEC of atomic Cooper pairs, the BEC-BCS
(Bardeen-Cooper-Schrieffer) transition.

Since the atomic and molecular lifetimes are influenced
by three-body processes, these experiments underscore the
importance of knowing the dependence of ultracold three-
body collision rates on a. In particular, vibrational relaxa-
tion releases enough kinetic energy to free the collision
products from typical traps, leading to molecular loss.
Three-body recombination and collision-induced dissocia-
tion can also contribute to atomic and molecular loss,
respectively. In ultracold collisions, the process that domi-
nates is determined in large part by the threshold and
scattering length scaling laws.

Threshold laws, which give the energy dependence for
small collision energies, dictate the dominant partial wave
for each process. The threshold law for elastic two-body
collisions, for instance, gives an s-wave cross section that
is constant at threshold while the I/th partial wave is sup-
pressed by a factor of E?. Combined with permutation
symmetry requirements, the threshold law thus leads to the
conclusion that the cross section for two identical fermions
vanishes at low energies. Three-body threshold laws simi-
larly depend on the number and kind of identical particles
for each partial wave J™, where J is the total orbital angular
momentum and 77 is the parity [2].

While general results exist for three-body threshold
laws, no similarly general scattering length scaling laws
have yet been obtained. Results for some specific cases
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have been obtained using a variety of methods from simple
to complex. The recombination rate for B + B + B colli-
sions, where B is a boson, for instance, scales roughly as at
for 0" and all @ [3-5], and as a8 for 2* and @ > 0 [6]. For
F + F + F' collisions, where F and F’ are fermions, re-
combination scales as a® for a > 0 [7]. It has also been
shown for a > 0 that the relaxation rate for BB + B colli-
sions is linear in a [5], but is a=333 for FF' + F [8].

In this Letter we present a simple and unifying physical
picture within which both the energy and scattering length
dependence of all ultracold three-body collision rates (for
short-range two-body interactions) can be derived and
understood. Such a picture is possible because all systems
can be represented by one of four prototype systems (two
each for a >0 and a < 0). In all cases, though, the rate
limiting step is tunneling through a potential barrier in the
initial channel (determined here from the adiabatic hyper-
spherical representation [9]). A simple WKB approxima-
tion to the tunneling probability is then sufficient to give
both the energy and scattering length dependence.

The present approach reproduces the known results in a
simple and conceptually clear manner and provides a
general form for the scaling laws in all other cases, includ-
ing arbitrary J7. In addition, our results demonstrate that
both threshold and scaling laws depend only on the initial
collision channel and make explicit the pervasive influence
of Efimov physics [10] on ultracold three-body collisions.
We have restricted our discussion to systems with equal
masses and to symmetries that support s-wave two-body
collisions, representing most cases of experimental inter-
est. We note that the present results apply only in the
threshold regime, i.e., when the collision energy is the
smallest energy in the system [6].

In the adiabatic hyperspherical representation, the three-
body effective potentials and couplings are determined
from the adiabatic equation [9],

where () denotes all hyperangles and R is the hyperradius
that, roughly speaking, gives the overall size of the system.
The adiabatic Hamiltonian H,4 includes the hyperangular
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kinetic energy as well as all interactions. By expanding the
total wave function on the adiabatic basis ®,, the
Schrédinger equation is reduced to (atomic units will be
used unless otherwise noted)

1 &
|: 2,LL dR2 V:| v ng vv't v v ()

In this expression, u is the three-body reduced mass, E is
the total energy, F, is the hyperradial wave function, V,,,
is the nonadiabatic coupling responsible for inelastic tran-
sitions, and W, is the effective potential.

For short-range two-body interactions, the asymptotic
behavior of W, can be derived analytically [11], yielding
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for the molecular and continuum channels, respectively.
The molecular bound state energy E, is labeled by the
rovibrational quantum numbers v and /’; [ is the atom-
molecule relative angular momentum; and A is a positive
integer that labels the eigenstates of the kinetic energy [2].

In the limit |a| > r,, where ry is the characteristic size
of the two-body potential, Eq. (3) applies only for R > |al.
The modifications to W, for ry < R < |a| are directly
responsible for the intriguing phenomenon known as the
Efimov effect [10]. In this range, the potentials are still
proportional to R™2, but can now be attractive as well as
repulsive. These modifications must be considered in order
to properly predict the dependence of the three-body rates
on a [3—6]. Strictly speaking, the term “Efimov effect”
applies only to the emergence of an infinity of three-body
bound states for |a| — o0. We will instead use the term
“Efimov physics” to indicate the qualitative change in
behavior exhibited by any system whenever at least two
of the three possible scattering lengths are large.

Based on the modifications due to Efimov physics, we
can classify all three-body systems into one of two cate-
gories: those with an attractive potential for ry < R < |a|
and those without. For equal-mass systems, only 0" bo-
sonic systems fall into the first category. In these systems,
the attractive potential appears in the highest vibrationally
excited s-wave molecular channel for a > 0, and in the
lowest continuum channel for a < 0. The effective poten-
tials for all higher channels are repulsive. These potentials
are conveniently parametrized by
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The coefficients s, and s, depend on the number of reso-
nant pairs as well as the number of identical particles. For
all other cases, including J > 0, the relevant potentials are
always repulsive. Like the 0" bosonic case, these poten-
tials are parametrized by coefficients p, and p,:
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In all cases, deeply bound molecular channels are essen-
tially independent of a. The coefficients in Eqgs. (4) and (5)
can be obtained analytically [10], and numerical values are
shown in Table I for the two most dominant partial waves
for relaxation and recombination near threshold. Table I
also shows the minimum [/ and A [see Eq. (3)] allowed by
permutation symmetry for each partial wave [2].

The relevant potentials and couplings are sketched in
Figs. 1(a) and 1(b) for 0" bosonic systems and in Figs. 1(c)
and 1(d) for all other cases. For ry, < R < |a/, the potentials
are given by Egs. (4) and (5); for R > |al, the potentials are
those in Eq. (3). The lowest continuum channel, labeled
“a,” is the initial channel for recombination. Channel
“B” is the weakly bound molecular channel and is the
initial channel for relaxation, while “y”’ is a deeply bound
molecular channel. The nonadiabatic couplings in Fig. 1
indicate the regions where inelastic transitions are most
likely. From our numerical calculations and on physical
grounds, we believe that Fig. 1 represents all three-body
systems near threshold.

Knowing the dependence of the potentials and couplings
on R and a enables us to derive the scaling laws from the
definitions of the rates,

Vit = [T/ k, Ky o |Ty ]2 /K4, 6)

in terms of the transition probabilities |Tf,»|2. Only the wave
vector important for the threshold law has been included—
k> = 2u(E — E,p) for V., and k* = 2uE for K;.

The transitions proceed via tunneling in the initial po-
tential to the R where the coupling peaks and the transition
probability can be approximated by the WKB tunneling
probability (including the Langer correction [4]),

ch"_).y%exp[—fo\/2u<Wy(R)+ 1/4 —E)dR} 7)
v

2uR?

The Langer correction is crucial for obtaining the correct

TABLE I. Coefficients of the potentials in Eqs. (3)—(5). Except
for 0" bosons, the coefficients correspond to p, and p,.
JT lmin Amin SO(pO) SV(pI/)
BBB 0* 0 0 1.0062378 4.465294 6
1 1 3 2.8637994 6.462204 4
27 2 2 2.8233419 5.5082494
BBB’ 0* 0 0 04136973 3.450989 1
1~ 1 1 2.2787413 3.6413035
FFF' 0* 0 2 21662220 5.1273521
1~ 1 1 1.7727243 4.3582493
27 2 2 3.1049769 47954054
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FIG. 1. Schematic plot of the three-body effective potentials

for 0" bosonic systems with (a) a > 0 and (b) a < 0, and for all
other systems with (c) @ >0 and (d) a <0.

scaling with E and a. At ultracold temperatures, the clas-
sical turning point is much larger than |al.

In all cases, the couplings peak at R = |a|, R = r, or
both. Relaxation for a > 0, for instance, only occurs at
small distances, R = rj, where the coupling peaks [V, in
Figs. 1(a) and 1(c)]. It follows that the tunneling probabil-
ity in the initial channel 8 must be evaluated by integrating
Eq. (7) from the classical turning point r, to ry. This range,
however, spans both kinds of potentials so that the tunnel-
ing in the two regions must be included,

7,417 = PP PE, . (8)

Similarly, the transition probability for recombination must
also include tunneling in two different regions between r,
and r. Recombination for a > 0 can occur, though, at two
distances—R =~ a and R = r,—since the coupling peaks
both places, leading to

ITgal? = Pi% + PV, PE., + PP, (9)

where each term corresponds to a different reaction path-
way leading to recombination to the highest vibrationally
excited state. Recombination to deeper bound states can
easily be included and reproduces the results in Ref. [5].
Although not indicated here, these paths can interfere. The

relative importance of each pathway, and of the interfer-
ence between them, will be discussed below. For a < 0, all
couplings peak at R = ry. Applying the arguments above,
relaxation and recombination are, respectively,

P(CV)

2 - pB 2 o pla)
|Tyﬁ| = PrC—PFO; |Tﬂa| ~p lal—ry"

re=lal

(10)

We can now determine both the threshold laws and the
scattering length scaling. Since W, has the same form in
the region R > |a| in all cases [Eq. (3)], the tunneling
probabilities in this region are also the same,

P(rljllal o (ka)?A 4, pB

re—lal

« (ka)®*. (11

Equation (11) completely determines the threshold laws
for each process [2]. The scaling with a, however, will be
strongly modified by the tunneling probability in the region
ro < R < |al| due to Efimov physics.

For 0" bosons with a > 0, the B-channel potential is

attractive in the region ry < R < a. Consequently, the

probability PE,@.,O [Egs. (8) and (9)] is not a tunneling

probability, but rather a transmission probability that can
be determined from general arguments based on the known
solutions for Eq. (2) [5,10]. This analysis gives

Voo« sinh(27)
rel [sinz[so In(a/ry) + ®] + sinh?(n)

since / = 0 in Eq. (11). The constant 7 is related to the
probability for transitions at small distances [5] and @ is an
unknown small-R phase. Equation (12) has been deduced
[5] as a generalization of the result presented in Ref. [10].
In both cases, however, the linear dependence on a was
obtained indirectly by dimensional and physical argu-
ments, while it follows naturally from Eq. (11) in the
present analysis.

For 01 bosons with a < 0, the initial state for relaxation
is a deeply bound vibrational state independent of a. The
transmission probability, and thus the relaxation rate, does
not depend on a either, leading to

Vi o A k2RI (13)

}a, (12)

Here and below, the constant A, generically represents the
small-R transition probability and can display resonant
effects due to a three-body Feshbach resonance, but is
otherwise independent of a.

For all cases other than 01 bosons, the initial channel for
relaxation is repulsive for ry < R < |a| [Figs. 1(c) and
1(d)] so that relaxation proceeds by tunneling only. For
a > 0, the relaxation rate is

7o\ 2P

Vrel o Aﬂk21<_0> OIJZHI, (14)
a

which decreases with a whenever 2/ + 1 < 2p,, yielding,

in turn, longer molecular lifetimes. Relaxation for FF' + F

collisions, for instance, scales as a 333244 (see Table I).

This result agrees with the recent prediction of Petrov et al.
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TABLE II. Threshold and scattering length scaling laws for

three-body rates. Boldface indicates dominant contributions.
JT Vrel K3 (D3)

E a>0 a<o0 E a>0 a<o0

BBB 0" const a* const const(k*) a** Jal*
- a2 const  kS(k'0) al%  |al*272
2+ K a*()A647 const k4(k8) a8b |a|2A353

BBB' 0" const a const const(k?) a* lal*
- 2 a 58 const  K2(k) as a3

FFF' 0" const a332° const k*(k®) at  |al>o08
- R a 0% const  k2(kS) a®  |a|245
2+ k4 a—14210 const k4(k8) (18 |a|1A790

“Refs. [3-5].

°Ref. [6].

‘Ref. [8].

dRef. [7].

[8] and is consistent with experiments [1]. Like the 0*
boson systems, relaxation does not depend on a for a <0,

Viel & A,,,kzlr(z)l“. (15)

The present analysis applies equally well to recombina-
tion. For instance, recombination of 0™ bosons with a > 0
is determined from Eq. (9), which includes three different
recombination paths. Only the interference between the
first two terms in Eq. (9) will be included here, since we
expect the third term will be suppressed. In fact, this
interference is well known [3-5], and the present analysis
reproduces the known expression plus a modification:

ro\2s,
Ky |:sin2[s0 In(a/ry) + ®] + A,,(Z()) }a“. (16)

The first term in Eq. (16) is the usual result, while the
second is due to recombination at small R and was not
predicted in Refs. [3—5]. Because the small-R coupling lies
so far into the classically forbidden region, we expect A,, to
be small. For a <0, the present analysis yields the same
expression found in Ref. [5],

sinh(27)
[sinz[so In(|a|/ry) + ®] + sinh?(n)

}a“. (17)

The recombination rate for all other cases can be deter-
mined, giving for a > 0 and a < 0, respectively,

2p 2p,
K; = k“[l + An<@> "y Bn<@> ! }a”‘“ (18)
a

a

K3 o k2/\<r0>2p0|a|2)1+4, (19)
|al
predicting an asymmetry in K3 for @ <0 and a > 0. The
constants A, and B, are expected to be small.
We have also solved Eq. (2) numerically using model
two-body potentials, confirming Eqs. (12)—(15) for BB +

B and FF’ + F collisions. For FF' + F, contributions for
both s-wave and p-wave final states scale as a~ >33, em-
phasizing that the scaling only depends on the initial state.

Table II summarizes the scaling laws, showing only the
main power-law behavior of each rate. The two dominant
partial waves, determined by their energy dependence, are
shown for each process. We also have indicated the pre-
viously known results as well as the competition from the
next leading term for finite temperatures. For fermion
relaxation, this term is comparatively more important
than for bosons. For completeness, we include the results
for the dissociation rate D5 (for which k* = 2uE).

In this Letter, we have deduced the scaling laws for
ultracold three-body collision rates for all equal-mass
three-body systems and symmetries that support s-wave
two-body collisions. We have developed a simple and
unifying approach that describes intuitively all three-
body collision processes in the same framework. Our
analysis shows that for relaxation and recombination, the
scaling laws as well as the threshold laws depend only on
the initial state. Any dependence on the final state is
expected to enter via the coupling terms, and should at
most be weakly dependent on energy and scattering length.
These results demonstrate yet again the remarkable influ-
ence of Efimov physics in ultracold three-body collisions,
even for systems without bosons.
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