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Ab-Initio Coupled-Cluster Study of 16O
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We report converged results for the ground and excited states and matter density of 16O using realistic
two-body nucleon-nucleon interactions and coupled-cluster methods and algorithms developed in
quantum chemistry. Most of the binding is obtained with the coupled-cluster singles and doubles
approach. Additional binding due to three-body clusters (triples) is minimal. The coupled-cluster method
with singles and doubles provides a good description of the matter density, charge radius, charge form
factor, and excited states of a one-particle, one-hole nature, but it cannot describe the first-excited 0� state.
Incorporation of triples has no effect on the latter finding.
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One of the most important problems in nuclear physics
is to understand how nuclear properties arise from the
underlying nucleon-nucleon interactions. Recent progress
using Monte Carlo [1] and diagonalization [2] techniques
produced converged results for nuclei with up to A � 12
active particles, yielding a much-improved understanding
of nuclear forces in light systems. To extend these ab-initio
studies to medium-size nuclei, one must explore computa-
tionally less expensive methods. Coupled-cluster theory
[3] (see [4–7] for reviews) is a promising candidate for
such developments since it can provide a highly accurate
description of many-particle correlations at relatively low
cost. Recently, Mihaila and Heisenberg performed
coupled-cluster calculations for the binding energy and
the electron scattering form factor of 16O using modern
interactions and bare Hamiltonian [8] (for a review of
earlier applications of coupled-cluster theory to nuclei,
see, e.g., [4]). In previous work [9], we took another route
and used quantum chemical coupled-cluster methods and
the renormalized Hamiltonian to compute ground and
excited states of 4He and ground-state energies of 16O in
a small model space consisting of 4 major oscillator shells,
demonstrating promising results when compared with ex-
act shell-model diagonalization.

In this Letter we report, for the first time, converged
coupled-cluster calculations for ground-state and excited-
state energies and other properties of 16O using modern
nucleon-nucleon interactions derived from effective-field
theory [10]. Our ground-state calculations involving one-
body and two-body components of the cluster operator are
performed in up to 8 major oscillator shells (480 uncoupled
single-particle basis states), while the corrections due to
three-body clusters and computations of excited states and
nuclear properties involve up to 7 major oscillator shells
(336 single-particle states). The significant progress in
going from model calculations using 80 single-particle
states [9] to large-scale calculations involving 16 corre-
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lated nucleons and almost 500 single-particle states has
been possible due to the development of general-purpose
coupled-cluster computer programs for nuclear structure,
using diagram factorization techniques and algorithms to
solve coupled-cluster equations from quantum chemistry.
We pay particular attention to three aspects of the calcu-
lations: (i) the convergence of the ground-state energy with
respect to the size of the model space and the role of
higher–than–two-body clusters in such studies, (ii) the
ability of coupled-cluster methods to describe excited
states, and (iii) the performance of coupled-cluster meth-
ods in studies of nuclear radii, matter density, charge form
factor, and occupation numbers. We have not yet included
the three-nucleon interaction that should eventually be
considered [1,2]. However, our calculations represent a
dramatic step forward in nuclear many-body computations
due to the enormous oscillator space we probe through
application of computationally efficient coupled-cluster
methods. They teach us about the nucleon correlations
and the magnitude of the (missing) three-body forces.

We use two variants of effective-field-theory-inspired
Hamiltonians, Idaho-A and N3LO [11]. The Idaho-A po-
tential was derived with up to chiral-order three diagrams
while N3LO includes chiral-order four diagrams, and
charge-symmetry and charge-independence breaking
terms. We also include the Coulomb interaction with the
N3LO calculations. Since very slow convergence with the
number of single-particle basis states was obtained using
bare interactions [8], we renormalize the bare Hamiltonian
using a no-core G-matrix approach [12] which obtains a
starting-energy dependence ~! in the two-body matrix ele-
ments G� ~!�. We use the Bethe-Brandow-Petschek [13]
theorem to alleviate much of the starting-energy depen-
dence (see [12] for details). This dependence is weak for
16O, particularly for the matrix elements below the Fermi
surface [14]. The effective Hamiltonian for coupled-cluster
calculations is H0 � t�G� ~!�, where t is the kinetic en-
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FIG. 1 (color online). The coupled-cluster energies of the
ground-state (g.s.) and first-excited 3
 and 0� states as functions
of the number of oscillator shells N obtained with the Idaho-A
interaction.
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ergy. We correct H0 for center-of-mass contaminations
using the expression H � H0 � �c:m:Hc:m:. We choose
�c:m: such that the expectation value of the center-of-
mass Hamiltonian Hc:m: is 0.0 MeV. We note that intrinsic
excitation energies are virtually independent of �c:m: while
the unphysical, center-of-mass contaminated states show a
sharp, nearly linear dependence of excitation energies on
�c:m:. This allows us to separate intrinsic and center-of-
mass contaminated states.

Once the one- and two-body matrix elements of the
Hamiltonian H are constructed, we solve the A-body prob-
lem using quantum chemical coupled-cluster techniques.
In the ground-state calculations, we use the coupled-cluster
singles and doubles (CCSD) approach [15], to describe
correlation effects due to one- and two-body clusters, and
the completely renormalized CCSD(T) [CR-CCSD(T)]
method [16], to correct the CCSD energies for the effects
of three-body clusters (‘‘triples’’). In the excited-state and
property calculations, we use the equation-of-motion
(EOM) CCSD method [17] (equivalent to the linear re-
sponse CCSD approach [18]). We also correct the energies
of excited states obtained with EOMCCSD for the effects
of triples using the CR-EOMCCSD(T) approach [16]. The
details of the above methods can be found elsewhere [15–
17]. Here, we only mention that the CCSD method is
obtained by truncating the many-body expansion for the
cluster operator T in the exponential ansatz exploited in
coupled-cluster theory, j �0i � exp�T� j �i, where j �0i
is the correlated ground-state wave function and j �i is the
reference determinant. Following Ref. [9], we take the
oscillator product state of 16O as the reference state. The
truncated cluster operator used in the CCSD calculations
has the form T � T1 � T2, where T1 �

P
i;at

i
aa

y
aai, and

T2 �
1
4

P
ij;abt

ij
aba

y
aa

y
bajai are the singly and doubly excited

clusters and i; j; . . . (a; b; . . . ) label the single-particle
states occupied (unoccupied) in j�i. We determine the
singly and doubly excited cluster amplitudes tia and tijab
by solving the nonlinear system of algebraic equations,
h�a

i j �Hj�i � 0, h�ab
ij j �Hj�i � 0, where �H �

exp�
T�H exp�T�, and j�a
i i and j�ab

ij i are the singly and
doubly excited determinants, respectively, relative to j�i.
We calculate the ground-state energy E0 as h�j �H j�i. We
diagonalize the similarity-transformed Hamiltonian �H in
the relatively small space of singly and doubly excited
determinants j�a

i i and j�ab
ij i to obtain the excited-state

wave functions j��i and energies E�. The right eigen-
states of �H, R���j�i, where R��� � R0 � R1 � R2 is a sum
of the relevant reference (R0), one-body (R1), and two-
body (R2) components define the excited-state ‘‘ket’’ wave
functions j��i � R��� exp�T�j�i, whereas the left eigen-
states h�jL��� define the ‘‘bra’’ wave functions h ~��j �

h�jL��� exp�
T�. Here, each n-body component of R���

with n > 0 is a particle-hole excitation operator similar to
Tn, whereas L��� is a hole-particle deexcitation operator, so
that L1 �

P
i;al

a
i a

y
i aa and L2 �

1
4

P
ij;abl

ab
ij a

y
i a

y
j abaa. The
21250
right and left eigenstates of �H form a biorthonormal set,
h�jL���R���j�i � ���. If the only purpose of the calcula-
tion is to obtain excitation energies, the left eigenstates
h�jL��� are not needed. However, for properties other than
energy, both right and left eigenstates of �H are important.
In particular, we calculate the one-body reduced density
matrix ��� in quantum state j��i as follows:

��� � h�jL����exp�
T�ay�a� exp�T��R���j�i: (1)

In the CCSD ground-state (� � 0) case, we have T �

T1 � T2, R�0� � 1, and L�0� � 1��1 ��2, where the
one-body and two-body deexcitation operators �1 and
�2 are determined by solving the CCSD left eigenvalue
problem, obtained by right-projecting the equation h�j
�1��� �H�E0h�j�1���, with E0 representing the CCSD
energy and � � �1 ��2, on the singly and doubly exci-
ted determinants. Thus far, we have focused on the CCSD
and EOMCCSD methods which use inexpensive computa-
tional steps that scale as n2on4u, where no (nu) is the number
of occupied (unoccupied) single-particle states. While the
full inclusion of triply excited clusters is possible, the
resulting methods are expensive and scale as n3on

5
u. Thus,

we estimate the effects of T3 and R3 on ground-state and
excited-state energies by adding the corrections to the
CCSD or EOMCCSD energies, which only require n3on

4
u

noniterative steps. These corrections, due to T3 and R3,
define the CR-CCSD(T) and CR-EOMCCSD(T) ap-
proaches [7,16]. In this study, we use variant ‘‘c’’ of the
corresponding approaches, as described in [9].

We turn to a discussion of our 16O results. We choose the
oscillator energy �h! for our basis states to minimize the
CCSD energy. For the N � 7 and N � 8 oscillator shell
runs, �h! � 11 MeV, and the results are nearly indepen-
dent of �h! [12]. Shown in Fig. 1 are our CCSD or
EOMCCSD and CR-CCSD(T) or CR-EOMCCSD(T)
ground-state and excited-state energies as a function of
N. The symbols in Fig. 1 represent our calculations while
1-2
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the lines represent a fit of the form E�N� � E1 �
a exp�
bN�, where the extrapolated energy E1 and a
and b are parameters for the fit. We also show in Fig. 1
our calculations for the first-excited 3
 state and the posi-
tion of the lowest calculated 0� excited state. We now
discuss these results.

Triples correction to the CCSD ground-state energy.—
The small model space calculation [9] indicates that the
triples corrections to the ground-state CCSD energies are
small. We extend these calculations from 4 to 8 major
oscillator shells for CCSD calculations and to 7 major
oscillator shells for CR-CCSD(T) calculations, as shown
in Fig. 1. We find that the extrapolated CCSD energy is

119:4 MeV for Idaho-A. For the N � 7 Idaho-A calcu-
lation, the difference between the CCSD and CR-CCSD(T)
result is 0.6 MeV, while the extrapolated values differ by
only 1.1 MeV; our extrapolated CR-CCSD(T) energy is

120:5 MeV. The Coulomb interaction adds to the bind-
ing 11.2 MeV, so that our estimated Idaho-A ground-state
energy is 
109:3 MeV (compared to an experimental
value of 
128 MeV). Our N � 7 (N � 8) N3LO CCSD
and CR-CCSD(T) energies, which include the Coulomb
interaction, are 
112:4 (
111:2) and 
112:8 (
112:0)
MeV, respectively. Thus, the two-body interactions under-
bind 16O by approximately 1 MeV per particle, pointing to
the need for three-body forces. For the Idaho-A and N3LO
interactions and the 16O nucleus, we conclude that con-
nected T3 clusters are indeed small, contributing less than
1% to the ground-state energy. This is an important finding,
since it implies that ground-state correlations of a closed-
shell nucleus with two-nucleon interactions can be cap-
tured by the relatively inexpensive CCSD approach.
Another important finding is a rapid convergence of the
CCSD and CR-CCSD(T) energies with the number of
oscillator shells due to the renormalized form of the
Hamiltonian. For example, the difference between the
N � 8 and N � 7 CCSD or Idaho-A energies is 0.5 MeV
(see Fig. 1).

Calculations of the first-excited 3
 state.—The first-
excited 3
 state in 16O is thought to be principally a one-
particle–one-hole (1p-1h) state [19]. The experience of
quantum chemistry is that the EOMCCSD and CR-
EOMCCSD(T) methods describe such states well (pro-
vided that three-body interactions can be ignored). The
largest R1 amplitudes obtained in the EOMCCSD calcu-
lations indicate that the dominant 1p-1h excitations are
from the 0p1=2 orbital to the 0d5=2 orbital. The 2p-2h
excitations in the EOMCCSD wave function, defined as
R2 � R1T1 � R0�T2 � T2

1=2� (R0 � 0 in this case), are
much smaller than the R1 amplitudes, and the CR-
EOMCCSD(T) calculation hardly changes the total energy
of the state, which indicates that this state has indeed a
1p-1h nature. Our extrapolated Idaho-A results indicate
that the 3
 state lies at 
108:2 and 
108:4 MeV in the
EOMCCSD and CR-EOMCCSD(T) calculations, respec-
tively. The CR-EOMCCSD(T) method yields an excitation
21250
energy of 12.0 MeV for this state which experimentally lies
at 6.13 MeV. N3LO yields similar results. Based on the
1p-1h structure of the state, we conclude that Idaho-A and
N3LO do not yield an excitation energy for the 3
 state
which is commensurate with experiment. These results
agree with recent no-core shell-model calculations with
similar two-body Hamiltonians [20]. The 3
 state is ex-
pected to be built on 1p-1h excitations which depend on
the single-particle splittings. These splittings will be af-
fected by three-body forces not included in our
Hamiltonian, thus affecting the energy of the 3
 state.
Whether other mechanisms than three-body forces can
provide an additional binding of 6 MeV needs further
research. Our results are converged at the coupled-cluster
level employing the Idaho-A and N3LO two-body inter-
actions, so it is likely that the discrepancy between theory
and experiment resides in the Hamiltonian, not in the
correlation effects which EOMCCSD and CR-
EOMCCSD(T) describe very well if three-body forces
play no role and if the state has a 1p-1h nature.

Calculation of the first-excited 0� state.—This state
(experimentally at 6.05 MeV), believed to have a 4p-4h
character, cannot be described by our methods. This is
confirmed by the large differences between the
EOMCCSD or CR-EOMCCSD(T) results and experiment
(see Fig. 1). One would need to include 4p-4h cluster
operators (T4 and R4) to improve our results.

We also performed preliminary calculations for other
negative parity states. The quartet of negative parity states
starting with the J � 3
 state, and including the J � 1
,
2
, and 0
 states, are all believed to have a similar 1p-1h
character [19]. The EOMCCSD calculation with 5 major
oscillator shells and Idaho-A confirms the existence of this
quartet, giving excitation energies of 13.57, 15.37, 17.07,
and 17.15 MeV for the J � 3
, 1
, 2
, and 0
 states,
respectively. While these states are all a few MeV above
the experimental values, their ordering predicted by
EOMCCSD is correct.

Calculation of the one-body density.—We use Eq. (1),
where � � 0, to calculate the radial ground-state density
��r� and the root-mean-square (rms) radius of 16O (Fig. 2).
After correcting for the finite sizes of the nucleons, which
experimentally are r2p � 0:743 fm2 and r2n � 0:115 fm2,
and for the 0s center-of-mass motion, for which we use
h�0 j R j �0i �

62:2071
A �h! fm2, our rms charge radii for 16O

for 5, 6, and 7 oscillator shells are 2.45, 2.50, and 2.51 fm,
respectively, when the Idaho-A potential is used (N3LO
gives similar values). The experimental charge radius is
2:73� 0:025 fm. We also calculate the occupation proba-
bility for the natural orbitals. Experimental data from
quasielastic proton knockout [21] yields 2:17� 0:12%
for the 0d5=2 occupation and 1:78� 0:36% for the 1s1=2
occupation. We obtain 3.2% and 2.3%, respectively, using
Idaho-A in the N � 7 model space. For N3LO in the N � 7
model space, we obtain 3.8% and 2.6%, respectively. For
the calculation of the nuclear charge form factor, we follow
1-3
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FIG. 2 (color online). Top panel: The charge form factor com-
puted from the CCSD density matrix. Bottom panel: the matter
density in 16O. The results obtained with the Idaho-A interaction.

PRL 94, 212501 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
3 JUNE 2005
[22]. In this approach, the form factor includes contribu-
tions from the two-body reduced density matrix due to
center-of-mass corrections. We compute the one-body den-
sity contributions within the framework of CCSD theory
using Eq. (1). The contributions of the two-body density
matrix are computed within the shell-model like descrip-
tion as ���#� � h�0 j a

y
�a

y
�a�a# j�0i=h�0j�0i, where

we approximate j�0i by �1� C1 � C2� j �i, with C1 �
T1 and C2 � T2 �

1
2T

2
1 defining the 1p
 1h and 2p
 2h

components of the CCSD wave function. The upper part of
Fig. 2 shows the charge form factor for different model
spaces. The 5-shell and 6-shell results include the center-
of-mass corrections and exhibit a second zero. Compared
to the experimental value (the arrow in Fig. 2), the first zero
of the form factor is reasonable, although slightly too large;
this is consistent with an underestimated value of the
theoretical charge radius.

In summary, the 16O ground state is converged with
respect to the model space size and is accurately described
within the basic CCSD approximation, with three-body
clusters contributing less than 1% of the binding energy.
We attribute the 1 MeV per particle difference between the
coupled-cluster and experimental binding energies to
three-body forces. We obtained a correct description of
the quartet of low-lying negative parity 1p-1h excited
states, although there is a 6 MeV difference between the
converged coupled-cluster results and experiment for the
lowest J � 3
 state, which is, quite likely, due to an
inadequate description of the relevant nuclear forces by
the Hamiltonian. We were unable to accurately describe
the lowest J � 0� excited state due to connected 4p-4h
correlations missing in coupled-cluster approximations
employed in this study. The CCSD method provides rea-
sonable results for the nuclear matter density, charge ra-
dius, and charge form factor. The use of the renormalized
21250
Hamiltonian guarantees fast convergence of the results
with the number of oscillator shells. All of this makes
low-cost coupled-cluster methods a promising alternative
to traditional shell-model diagonalization techniques.
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