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Deconfinement Phase Transition in a 3D Nonlocal U(1) Lattice Gauge Theory
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We introduce a 3D compact U(1) lattice gauge theory having nonlocal interactions in the temporal
direction, and study its phase structure. The model is relevant for the compact QED3 and strongly
correlated electron systems like the t� J model of cuprates. For a power-law decaying long-range
interaction, which simulates the effect of gapless matter fields, a second-order phase transition takes place
separating the confinement and deconfinement phases. For an exponentially decaying interaction
simulating matter fields with gaps, the system exhibits no signals of a second-order transition.
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The U(1) lattice gauge theory (LGT) in three dimensions
(3D) coupled to matter fields describes various interesting
physical systems. The compact QED3 is just such a system,
and its phase structure has been studied by various methods
[1]. In condensed matter physics, interesting observations
were made that the strongly correlated electron systems in
two dimensions like the antiferromagnetic Heisenberg spin
model, the t� J model of high-Tc cuprates, and the frac-
tional quantum Hall states are described by 3D U(1) gauge
theories due to the introduction of auxiliary collective
fields [2–5].

For the case without matter-field couplings, Polyakov [6]
showed that the 3D compact U(1) gauge theory is always in
the confinement phase due to the monopole (instanton)
condensation. For the case with couplings to matter fields,
there is still no consensus on the question of whether the
system in two spatial dimensions exhibits a phase transi-
tion into a deconfinement phase. Probably the answer
depends on the properties of coupled matter fields. This
question is important because the ‘‘fractionalization’’ of
electrons may be interpreted as the deconfinement phe-
nomenon of U(1) gauge dynamics. For the t� J model, the
possibility of charge-spin separation (CSS) is of great
interest since it may explain various anomalous behaviors
of the metallic state of cuprates [7]. In Ref. [8] it was
argued that the CSS takes place below certain critical
temperature (T) as a deconfinement (perturbative) phase
of an effective U(1) LGT which is derived by the hopping
expansion of spinons and holons in the slave particle
representation at finite T. In related works, Nagaosa [9]
argued that the deconfinement phase is possible above
some T, whereas Nayak [10] argued that deconfinement
does not occur at any T. The deconfinement phase at T � 0
for systems with gapless excitations are supported in
Ref. [11] and denied in Ref. [12].
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In this Letter, we introduce and study a LGT with non-
local interactions in order to investigate the phase structure
of compact U(1) gauge theories coupled to matter fields on
the 3D lattice (2D system at T � 0). We first consider the
cases of massless and massive relativistic matter fields.
Then we apply the model to the nonrelativistic electron
systems. The results of this Letter for gapless excitations in
electron systems shall complement our previous result of
CSS [8] because the hopping expansion employed there
may be inadequate for massless excitations at T � 0.

Let us start with the path integral representation of the
partition function Z of gauge field Ux� and (bosonic and/or
fermionic) matter fields 	x,

Z �
Z Y

x

d �	xd	x

Y
x;�

dUx� exp�A�;

A � �
X
x;y

�	x
xy�U�	y � AU;

AU � q
X

x;�<�

� �Ux�
�Ux��̂;�Ux��̂;�Ux� � c:c:�;

(1)

where x � �x0; x1; x2� is the site index of the 3D lattice of
the size V�N0N1N2 with the periodic boundary condition,
��� 0; 1; 2� is the (imaginary) time and spatial direction
index, 	x is the matter field on x, Ux� � exp�i�x�����<
�x� � �� is the U(1) gauge variable on the link �x; x� �̂�,
and 
xy�U� represents the local couplings of 	x to Ux�.

By integrating over 	x, we obtain an effective gauge
theory,

Z �
Z Y

x;�

dUx� exp�fTr log
xy�U� � AU�; (2)

where f is a parameter counting the statistics and internal
degrees of freedom of 	x. Because of the �Tr log� term, the
1-1  2005 The American Physical Society



0.1 0.2 0.3 g

1

2

3

0.6 0.8 1 1.2 1.4 g
1

2

3

0.1 0.2 0.3 g
−4

−3

−2

−1

0.6 0.8 1 1.2 1.4 g
−5

−4

−3

−2

−1 (b)(a)

(c) (d)

E E

C C

FIG. 1 (color online). Internal energy E and the fluctuation C
of the action with  � 1 vs nonlocal coupling g for N � 8 (�),
16 (�), 24 (�); (a),(c) PD model, (b),(d) ED model. The solid
lines in (a) and (b) are the large g expansion. In the PD model,
strong N dependence is observed in E at large g and in the
developing peak of C. They indicate a second-order phase
transition in the PD model.
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effective gauge theory becomes nonlocal. For relativistic
matter fields, it is expanded as a sum over all the closed
random walks R (loops including backtracking) on the 3D
lattice which represent world lines of particles and anti-
particles as

Tr log
xy�U� �
X
R

�L�R�

L�R�

Y
�x��2R

Ux�: (3)

L�R� is the length of R, and � � �6�m2��1 is the
hopping parameter (6 is the number of links emanating
from each site, and m is the mass of the matter field in units
of lattice spacing). For the constant gauge field configura-
tion Ux� � 1, the expansion in (3) is logarithmically di-
vergent 
 logm as m! 0 due to the lowest energy zero-
momentum mode.

Below we shall study a slightly more tractable model
than that given by Eq. (2). It is suggested from the formal
hopping expansion (3), and obtained by retaining only the
rectangular loops extending in the temporal direction in the
loop sum and choosing their coefficients optimally as
follows:

ZT �
Z Y

x;�

dUx� exp�AT �;

AT � g
X
x

X2
i�1

XN0

��1

c��Vx;i;� � �Vx;i;�� � AS;

Vx;i;� � �Ux��0̂;i

Y��1

k�0

� �Ux�k0̂;0Ux�î�k0̂;0�Uxi;

AS � g 
X
x

� �Ux2
�Ux�2̂;1Ux�1̂;2Ux1 � c:c:�:

(4)

Vx;i;� is the product of Ux� along the rectangular (x, x� î,
x� î� �0̂, x� �0̂) of size �1� �� in the �i� 0� plane. In
AS, we have retained only the nearest neighbor spatial
coupling. For the nonlocal coupling constant c�, we con-
sider the following two cases:

c� �
� 1
� ; power-law decay �PD�;
e�m�; exponential decay �ED�:

(5)

The power �1 in the PD case in (5) reflects the effect of
massless excitations. In fact, this c� generates a logarithmi-
cally divergent action forUx� � 1 explained below Eq. (3)
as one can see from the relation, �� exp��m���

�1 ’
log�1=m�. The action for m � 0 is then proportional to
����1 ’ logN0 for finite N0. On the other hand, the ED
model contains m and simulates the case of massive matter
fields [13].

We made Monte Carlo simulations to determine the
phase structure of this model. We consider the isotropic
lattice, N� � N, with the periodic boundary condition up
to N � 32, where the limit N ! 1 corresponds to the
system on a 2D spatial lattice at T � 0. For the mass of
the ED model, we set m � 1. For the spatial coupling  
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scaled by g, we consider the two typical cases  � 0 (i.e.,
no spatial coupling) and  � 1.

First, we calculate the following average E (‘‘internal
energy’’) and the fluctuation C (‘‘specific heat’’) of AT :

E � �hAT i=V; C � h�AT � hAT i�2i=V: (6)

For small g, the high-temperature expansion (HTE) gives
Z ’ exp�g2�2Q2 �  2�V� (Qk � ��c

k
�), whereas for large

g, the low-temperature expansion (LTE) around Vx;i;� � 1
gives Z ’ exp��4gQ1 � 2g � logg�V�.

In Fig. 1, we present E, C for  � 1 vs the nonlocal
coupling g. They agree with the above HTE and LTE. In
the PD model, E of Fig. 1(a) connects the HTE result and
the LTE result, showing that Vx;i;� 
 1 for large g. C of
Fig. 1(c) shows that its peak develops as N increases. The
finite-size scaling analysis shows C of Fig. 1(c) fits well in
the form C�g;N� � N%=�	�N1=�&�, & � �g� gc�=gc with
� � 1:2
 1:3, %=� � 0:25
 0:26, gc � 0:10
 0:12.
These results indicate that the PD model exhibits a
second-order phase transition separating the disordered
(confinement) phase and the ordered (deconfinement)
phase at g � gc. This transition will be confirmed later
by the measurement of Polyakov lines. On the other hand,
the peak of C in the ED model does not develop as N
increases, showing no signals of a second-order transition.
It may have a higher-order transition or just a crossover.
Simulations of the models with  � 0 give similar behav-
iors of E,C, preserving the above phase structure for  �1.

To study the nature of gauge dynamics, we calculated
the spatial correlations of Polyakov lines Px? :

Px? �
YN0

x0�1

Ux?;x0;0; x? � �x1;x2�; fP�x?�� h �Px?P0i:

(7)
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FIG. 2 (color online). Correlations of Polyakov lines, fP�x?�
vs jx?j. (a) PD ( � 0, N � 16) with g � 0:4, 0.3, 0.2, 0.1, 0.02
from above. (b) ED ( � 0, N � 16) with g � 2:5, 2.0, 1.5, 1.0,
0.5 from above. (c),(d) The order parameter p � �fP�x

MAX
? ��1=2

vs g for the PD model; (c)  � 0, and (d)  � 1. They exhibit a
long-range order for g > gc ’ 0:15 in the PD model.
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FIG. 3 (color online). Average instanton density * vs g. (a) PD
( � 0, N � 8), (b) PD ( � 0, N � 16), (c) PD ( � 1, N �
8), (d) PD ( � 1, N � 16), (e) ED ( � 0, N � 8, 16), and
(f) ED ( � 1, N � 8, 16). The solid curve / exp��cg� fits (f)
at large g.

FIG. 4. Snapshots of instanton configuration *�x� for N � 16.
(a) PD ( � 1, g � 0:15), and (b) PD ( � 1, g � 0:30). The
light cubes are for *�x� � 1 and the dark cubes for *�x� � �1.
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Since the present model (4) contains no long-range inter-
actions in the spatial directions, fP�x?� is expected to
supply us with a good order parameter to detect a possible
confinement-deconfinement transition. The deconfinement
phase is characterized by small fluctuations of Ux� and
therefore by an order in fP�x?�.

In Fig. 2, we present fP�x?� with  � 0. The PD model
of Fig. 2(a) clearly exhibits an off diagonal long-range
order, i.e., limx?!1fP�x?� � 0 for g � 0:20, whereas the
ED model of Figs. 2(b) does not for all g’s. To see this
explicitly, we plot in Figs. 2(c) and 2(d) the order parame-
ter p � �fP�xMAX

? ��1=2 for the PD model, where xMAX
? �

N=
���
2

p
is the distance at which fP becomes minimum due

to the periodic boundary condition. p starts to develop
continuously from zero at g � gc ’ 0:15. The size depen-
dence of p shows a typical behavior of a second-order
transition. Thus the gauge dynamics of the PD model is
realized in the deconfinement phase for g > gc, whereas it
is in the confinement phase for g < gc. In contrast, the ED
model stays always in the confinement phase. These results
including the value of gc are consistent with those derived
from the data of E, C in Fig. 1.

To see the details of gauge dynamics, we measured
the instanton density *�x�, an index for the disorder of
Ux�. We employ the definition of *�x� in U(1) LGT by
DeGrand and Toussaint [14]. For the local 3D compact
U(1) LGT without matter fields, the average density * �
h�xj*�x�ji=V was measured in Ref. [15]. In Fig. 3 we pre-
sent * vs g. It decreases as g increases more rapidly in the
PD model than in the ED model. This behavior of * is
consistent with the result that the PD model exhibits a
second-order transition, while the ED model does not.
The  coupling enhances the rate of decrease in * as one
expects since the spatial coupling favors the ordered de-
confinement phase. In the ED model with  � 1, * is fitted
by / exp��cg� with a constant c in the dilute (large g)
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region, and the smooth increase for smaller g indicates a
crossover from the dilute gas of instantons to the dense gas,
just the behavior similar to the case of pure and local LGT
[6,15].

In Fig. 4 we show snapshots of *�x� for the PD model
with  � 1. Figure 4(a) is a dense gas and Fig. 4(b) is a
dilute gas. They are separated at gc ’ 0:20, the location of
the peak of C for N � 16. In Fig. 4(b), instantons mostly
appear in dipole pairs at nearest neighbor sites, *�x� � 1,
*�x��� � �1, while in Fig. 4(a), they appear densely,
and it is hard to determine their partners. In both cases, the
distributions *�x� have no apparent anisotropies like col-
umn structures. However, the orientations of dipoles in
Fig. 4(b) are mostly (
92%) in the temporal direction as
expected from Eq. (4).

For ordinary pure and local gauge systems, Wilson loop
W�C� � h

Q
CUx�i along a closed loop C on the lattice is

used as an order parameter to study the gauge dynamics;
W�C� obeys the area law in the confinement phase and the
perimeter law in the deconfinement phase:

W�C� 


�
exp��aS�C��; area law;
exp��a0L�C��; perimeter law;

(8)

where S�C� is the minimum area of a surface, the boundary
of which is C. For a local LGT containing matter fields,
W�C� cannot be an order parameter because the matter
fields generate the terms

Q
CUx� with coefficients


 exp��bL�C�� in the effective action. However, in the
1-3
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FIG. 5 (color online). Wilson loops (N � 32) in the 1-2 plane
at large g vs L�C� or S�C�. (a) PD ( � 1, g � 0:25), and (b) ED
( � 1, g � 1:5). The PD model seems to prefer the perimeter
law, whereas the ED model prefers the area law.
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present model (4), the nonlocal terms are restricted only
along the temporal direction, so it is interesting to measure
W�C� for the loops lying in the spatial (1-2) plane.

In Fig. 5, we plot W�C�. For the PD model in Fig. 5(a),
the data at g � 0:25 seem to prefer the perimeter law. For
the ED model in Fig. 5(b), the area law fits W�C� better
than the perimeter law at g � 1:5; a considerably larger
value than g ’ 1:0 at the peak of C. This suggests the area
law holds in the ED model at all g. These observations are
consistent with the previous results on the (non)existence
of a phase transition. Wilson loops in the spatial plane are
useful to study the gauge dynamics of the present model.

We have observed that the nonlocal couplings along the
temporal direction in the PD model have the sufficient
effect of suppressing fluctuations of Ux� to produce the
deconfinement phase. This result strongly suggests a de-
confinement transition in the original model (2) with mass-
less matter fields, because the isotropically distributed
nonlocal couplings of the original model should have a
similar effect. In such a possible deconfinement phase of
the original model, perturbation theory may be applicable,
which predicts the potential energy between two charges as
V�r� 
 r�1, a weaker one than the 3D Coulomb potential
V�r� 
 log�r�.

Let us turn to the nonrelativistic case. For the t� J
model, by using the hopping expansion of holons and
spinons at finite T with the continuous imaginary time,
we derived an effective gauge theory, which is highly
nonlocal in the temporal direction. The obtained effective
theory has a similar action as Eq. (4) with c� � const and
g / n where n is the density of matter fields (holons and
spinons) [8]. The nonlocal correlations of the effective
gauge field like c� � const come from the fact that the
nonrelativistic fermions contain a higher density of low
lying excitations compared to Dirac fermions, i.e., the
existence of the Fermi surface (or line). Although the
above effective gauge model is obtained for the system at
finite T, we expect that a similar gauge model appears as an
effective model at T � 0. Then it is interesting and also
important to investigate the gauge model (4) with c� �
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const, the nondecaying (ND) model. The ND model should
shed some light on the anomalous normal state of cuprates
because the Fermi line exists there.

We also made a Monte Carlo simulation of the ND
model, and obtained a phase transition similar to the PD
model. However, the developing peak of C shifts to smaller
g as N increases more quickly than the PD model as gc 

0:1�N � 8�, 0:045�N � 16�, 0:03�N � 24� for  � 1. It
seems likely that gc ! 0 as N ! 1; that is, the deconfine-
ment phase dominates for all g�>0�. This may be related
with the diverging coefficient Q2�/ N� in HTE, which
implies that the radius of convergence is zero. This domi-
nance of the deconfinement phase of the ND model at
T � 0 may support the CSS at finite T, which is consistent
with the result of Ref. [8]. In contrast to the ND model, the
PD model has a finite limit ofQ2�� 1:645�, and has a finite
region 0 � g � gc of the confinement phase.
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