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Supersolids versus Phase Separation in Two-Dimensional Lattice Bosons
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We study the nature of the ground state of the two-dimensional extended boson Hubbard model on a
square lattice by quantum Monte Carlo methods. We demonstrate that strong but finite on-site interaction
U along with a comparable nearest-neighbor repulsion V result in a thermodynamically stable supersolid
ground state for densities larger than 1=2, in contrast to fillings less than 1=2 or for very large U, where the
checkerboard supersolid is unstable towards phase separation. We discuss the relevance of our results to
realizations of supersolids using cold bosonic atoms in optical lattices.
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FIG. 1. The ground state phase diagram of the 2D extended
Bose-Hubbard model (1) in the V � � plane for U=t � 20 and
densities � 
 1, showing superfluid (SF) phases, checkerboard
solids formed by single bosons (CDW I) and pairs of bosons
(CDW II), a Mott-insulating phase (MI), phase separation (PS),
and finally a supersolid phase (SS).
The detection of a possible supersolid (SS) state in
recent experiments on solid 4He by Kim and Chan [1]
has led to renewed interest [2] in a problem that has long
[3] intrigued physicists: Can a supersolid phase—with
simultaneous diagonal (solid) and off-diagonal (superfluid)
long-range order—exist in a bosonic system? While the
issue remains controversial [4–6] in a translationally in-
variant system despite almost 50 years of theoretical re-
search, the situation in lattice models is clearer.

Theoretical studies [7–11] of various lattice boson mod-
els (which can nowadays be implemented using cold bo-
sonic atoms on optical lattices [12]), appeared to confirm
that here SS ground states can indeed exist, particularly
when doped away from half filling. Studies of the closely
related quantum phase model found SS order in the ground
state even at half filling [9]. However, as was pointed out
recently, the stability of the SS against phase separation
had not been investigated [13]. Indeed, for hard-core bo-
sons on a square lattice, the most widely discussed SS
pattern with ��;�� diagonal order is thermodynamically
unstable and phase separates into a pure ��;�� solid and a
superfluid (SF) for all values of interaction strengths. A
striped SS phase with �0; �� ordering is stabilized by a
finite next-nearest-neighbor interaction.

In this work we analyze stability of crystalline and SS
orders of lattice bosons. We present exact strong-coupling
arguments showing under which conditions checkerboard
supersolids are unstable, and how they can be stabilized
with large but finite on-site and nearest-neighbor (nn) en-
ergies U and V. We support these arguments by quantum
Monte Carlo (QMC) simulations of a two-dimensional
(2D) extended Bose-Hubbard model demonstrating that
the SS phase is stabilized for densities � > 1=2 and suffi-
ciently large V (Fig. 1).

Specifically, we study the extended Bose-Hubbard
model (EBHM) on a d-dimensional hypercubic lattice
with on-site (U) and nn (V) interactions,
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where ayi (ai) creates (annihilates) a boson at site i with the
occupation number ni 	 ayi ai, t is hopping, � is the
chemical potential, and hi; ji runs over all nn pairs.

In the zero-hopping limit t � 0, the phase diagram is
simple. At low chemical potential �< 0, no bosons are
present. Increasing the chemical potential, the potential
energy (U;V > 0) is minimized at half-filling � � 1=2
by the crystal state with one sublattice occupied [checker-
board pattern with ��;�� modulation in 2D]. This state is
gapped and remains stable in the presence of a small
2-1  2005 The American Physical Society
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hopping, t � U;V, with a kinetic energy gain �E �
�zt2=�z� 1�V� per boson, where z � 2d is the coordi-
nance. At even larger � there is another first order phase
transition to an insulating state with density � � 1, which
can either be a uniform Mott insulator (MI) with one
particle per site for U > 4V, or a density wave with two
particles per site on one sublattice for U < 4V.

Introducing holes into the � � 1=2 crystal costs chemi-
cal potential � but no potential energy [see Fig. 2(a)]. The
kinetic energy gain is slightly increased (compared to � �
1=2 case) but remains quadratic in t for isolated holes.
However, the kinetic energy gain becomes linear in t if a
number of holes encircle a region of a crystal, forming a
domain wall [Fig. 2(b) and 2(c)]. The energy gain is
maximized at �E � �ct, 1< c< 2 per hole for a planar
[linear in 2D, see Fig. 2(c)] domain wall doped with one
hole per two sites. As a result, for a large system with N �
Ld sites, the crystalline order is destroyed by introduction
of a small density �� L�1 of holes. This instability of the
� � 1=2 crystal to domain wall formation upon hole dop-
ing excludes the possibility of a SS phase. On the isotropic
square lattice, the instability might develop further, leading
to a phase separation between the commensurate crystal at
� � 1=2 and a uniform SF with � < 1=2 (Fig. 1), as has
been discussed previously in Ref. [14].

Doping of the � � 1=2 crystal with additional bosons
works differently depending on the relation between V and
U. The energy cost to place a boson at an empty (occupied)
site is E0 	 zV �� (E1 	 U��). For U > zV, the addi-
tional bosons fill empty sites and mask the checkerboard
modulation; for U� zV � t > 0 the situation is precisely
particle-hole conjugate to hole doping. The kinetic energy
is again minimized at planar domain walls which destabi-
lize the checkerboard crystal order. In particular, in the
hard-core limit U ! 1, the crystalline order is always
unstable for � � 1=2.

With zV * U, however, the bosons can be placed on
either an occupied or unoccupied site. The total energy
of a single boson delocalized between the two sublattices
is E� E1 ����2z2t2 ��2�1=2, where �	 �zV�U�=2.
Clearly, for sufficiently small �� t, the kinetic energy
E� E1 is again linear in t and large, which prevents the
domain wall formation. As a result, these doped particles
will form a SF on top of the density-wave background and
hence a SS. Two bosons experience both on-site and nn
repulsion (2U and V respectively). Therefore, at suffi-
(a) (b) (c)

FIG. 2 (color online). The � � 1=2 checkerboard crystal
doped with holes. (a) A single hole. (b) Four holes encircle a
boson which can hop between the five degenerate sites.
(c) Domain wall doped with holes; bosons can hop freely across
the dashed line.
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ciently small densities the condensate should remain sta-
ble, which completes the formal argument for the SS
existence. We emphasize that this phase requires that put-
ting two bosons onto one site be energetically cheap, which
is not the case for hard-core bosons.

Similarly, at unit filling, � � 1, the ground state is a MI
with one boson per site for U > zV, and an ordered solid
with two bosons on every other site for U < zV. In the
former case, additional holes (particles) move along the
uniform background with the hopping integral t (2t) and
experience both nn and on-site repulsion (infinite in the
case of holes). They condense on top of the uniform
background forming a SF. However, for zV > U, the doped
particles move on a checkerboard background with the
effective hopping, e.g., t� � 2t2=zV �U � �z� 2�V�
for holes. The resulting kinetic energy gain is only qua-
dratic in t and can be superseded if the holes come together
into a SS phase with � * 1=2. Overall, this leads to a
thermodynamical instability of the hole-doped checker-
board solid formed by pairs of bosons at � � 1: the system
can minimize its energy by phase separation (PS). Note
that here phase separation is not between a SF and a solid
but between a SS and a solid. The solid order is not
destabilized at this first order phase transition, but just
the ‘‘Bose-Einstein condensation’’ transition of holes
doped into the solid becomes first order.

We next perform QMC simulations to corroborate these
arguments and to show the phase diagram and the exis-
tence of a SS phase for the EBHM in the low-density
region � 
 1. We have used loop-operator updates in a
stochastic series expansion QMC method [15] to study the
EBHM (1) in the strong-coupling regime U;V � t.
Simulations have been carried out on N � L� L lattices,
with L � 6; . . . ; 16. To obtain ground state results we
choose an inverse temperature � � 2L, and find rapid
convergence for the system sizes studied (see Fig. 4).

To characterize different phases, we have studied the
static staggered [Q � ��;��] structure factor,

S�Q� �
1

N

X

j;k

e�iQ��rj�rk�hnjnki � hnji
2; (2)

which measures the diagonal long-range order (checker-
board solid) in the system, and the SF density �s, measured
from the winding numbers of the bosonic world lines (Wx
and Wy) in the x and y directions as �s � hW2

x �

W2
y i=2�m, where m � 2=t is the effective mass of the

bosons. In the thermodynamic limit, a checkerboard solid
ground state at � � 0:5 is marked by (diverging) S��;�� /
N and vanishing �s, whereas a pure SF phase has
S��;��=N ! 0 and �s > 0. A SS phase, on the other
hand, is characterized by a finite S��;��=N and a nonzero
value of �s. For finite systems, both quantities are always
finite and estimates for the thermodynamic limit are ob-
tained from finite-size scaling of the observables.

A jump in � with varying � indicates a discontinuous
(first order) transition, and has been used to identify re-
2-2
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gions of PS in the canonical ensemble (fixed �). We post-
pone a more rigorous analysis to accurately identify the
nature of transitions and the precise domain boundaries to a
later study, and focus on establishing the existence of a SS
phase over finite regions of parameter space.

A plot of � vs � (Fig. 3) shows clear indications of PS at
� < 0:5 for all values of V— the discontinuity in � grows
with increasing V. For � > 0:5, the curves are qualitatively
different. For V <U=4, there is a small but finite region of
positive slope (e.g., 0:5< �< 0:52 for V � 3), followed
by PS for 0:52< �< 0:60, and a region of positive slope
for � > 0:6. At V � U=4, there is no evidence of PS for
� > 0:5. With V >U=4, the region of PS shifts to large
densities, � & 1. The location and extent of phase sepa-
rated regions for small V�<U=4� agrees well with
Ref. [13(b)] apart from the extra region of positive slope
for 0:5<�< 0:52 where the ground state has SS order
(see Fig. 4). The extent of the SS phase decreases rapidly
with decreasing V, becoming vanishingly small in the limit
V � U. We note that for small V the excess density ��
1=2< 1=L and larger L are required to map the SS phase
boundary accurately.

Figure 4 displays ground state results for S��;��=N and
�s as a function of � for three representative values of V.
The data are seen to be well converged with system size.
For small �, the ground state is a SF— the stiffness con-
verges to a finite value while S��;��=N scales to zero. As
� increases beyond a critical value, there is a discontinuous
transition to a (�;�) ordered density-wave (DW) ground
state with � � 0:5. Any intermediate density is inacces-
sible in the grand canonical ensemble. ForV � 3t�<U=4�,
at � > 0:5, there are indications of a small region of SS
characterized by finite values of both S��;��=N and �s,
but further finite-size scaling tests are needed to check
whether this region remains in the thermodynamic limit.
With increasing �, there is another discontinuous transition
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FIG. 3. The average density as a function of the chemical
potential for three different values of V (U � 20). For clarity
of presentation, data for only one system size, L � 16, is shown.
Error bars are smaller than the symbol sizes. Discontinuous
transitions are marked by finite jumps in the particle density.
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to a SF state with a second region of PS. Finally, at � � 1,
the ground state is a MI with both S��;��=N � 0 and
�s � 0. For V � 5t�� U=4�, the extent of the SS region
increases substantially and its stability is well established.
Additionally, the second phase separated region shrinks to
zero and there is a direct SS-SF transition. For V �
6t�>U=4�, the SF phase at � & 1 is replaced by another
region of PS. The ground state at � � 1 changes from a MI
to a (�;�) ordered DW with two particles occupying one
sublattice, with a discontinuous transition separating it
from the SF phase.

The results are combined to map the schematic ground
state phase diagram of the Hamiltonian (1) in the V � �
(Fig. 1) and �� 1=V (Fig. 5) planes. Figure 1 shows the
different phases in the (V; �) plane at a constant value of
on-site interaction, U � 20, t � 1. For small V, the ground
state is a SF for all � < 1. For V > 2:5t, the different
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FIG. 4. Staggered structure factor (open symbols) and super-
fluid stiffness (filled symbols) as a function of particle density �
for three representative values of V. Dashed lines in the phase
separated regions are results obtained by Maxwell construction.
See the text for a detailed discussion of the various phases.
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phases appear as shown in Fig. 1. The extent of the SS
phase and that of the phase separated region at � < 0:5
increases with increasing V, whereas the phase separated
region at � > 0:5 gets vanishingly small for moderate
values of V. It is not clear from the available data whether
the PS-SF phase boundary meets the SS boundary at a
point, or approaches it asymptotically. At V > 5:0t, the SF
region at high densities is replaced by a phase separated
region, while the ground state at � � 1 changes from a MI
to a (�;�)-ordered DW with two bosons occupying every
other lattice site. We note that the phase diagram is quali-
tative and the phase boundaries approximate.

The features of the phase diagram as a function of 1=V
(Fig. 5) are markedly different from the ‘‘lobe’’ structure
observed in a plot [9] of � as a function of t=U for the
EBHM. The nature of the ground state at � � 1 changes
from a DW to a MI as V is varied across U=4. This is
accompanied by a change in the curvatures of the phase
boundaries. Furthermore, the MI region remains finite even
in the limit of V ! 0. No evidence of SS phase is found at
� � 0:5, in agreement with the variational studies and
previous numerics [7,9].

In conclusion, we have provided strict arguments why a
soft-core model with V >U=z and densities � > 1=2 is
sufficient to stabilize a SS phase in a model with nn
couplings and substantiated the arguments with QMC cal-
culations of the phase diagram. The existence of a stable
SS phase is in contrast to the hard-core case where the
system phase separates for all values of nn interaction.

The instability towards PS is also present in higher
dimensions and in models with dipolar interactions,
although it again does not show up in mean-field calcula-
tions [10]. To stabilize a uniform SS phase one needs to
reduce the on-site interactions, e.g., with a Feshbach reso-
nance. This will be important for realizations of the SS
20720
phases when loading a of chromium atoms [16] into optical
lattices.

We finally note that in the studied range of parameters
(including very large V up to 12t), we have not found any
nominally gapless phase with both S��;��=N and �s zero
which could potentially be identified with a Bose metal
[17] (see also Ref. [13(d)]).

It is a pleasure to thank N. Prokof’ev, R. T. Scalettar,
B. Svistunov, and C. M. Varma for useful discussions.
Simulations were carried out in part at the Institute of
Geophysics and Planetary Physics at the University of
California, Riverside.
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