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Scaling and Universality of Integer Quantum Hall Plateau-to-Plateau Transitions
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We have investigated the integer quantum Hall plateau-to-plateau transition in two-dimensional
electrons confined to AlxGa1�xAs-Al0:33Ga0:67As heterostructures over a broad range of Al concentration
x. For x between 0.65% and 1.6%, where the dominant contribution to disorder is from the short-range
alloy potential fluctuations, we observe a perfect power-law scaling in the temperature range from 30 mK
to 1 K with a critical exponent � � 0:42� 0:01.
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The plateau-to-plateau transition in the quantum Hall
regime has been intensively studied [1–4] since the dis-
covery of the integer quantum Hall effect (IQHE). In the
IQHE, the Hall resistance Rxy has quantized values h=ie2

over a wide range of the magnetic field B around integer
Landau level filling factors i. The successive Hall plateaus
correspond to separated energy regions of localized states,
and in between them are extended states [5–7]. It was
shown that between two plateaus there is only one such
extended state at the critical energy Ec [1,8]. As the Fermi
energy approaches this critical energy, the localization
length is supposed to diverge following a power law 
 /
jE� Ecj�� with a universal critical exponent � [1–4]. The
extended state can also be accessed by sweeping B, a case
in which 
 / jB� Bcj

�� [1–4]. In order to extract � from
experimentally measured quantities one has to invoke the
finite size scaling theory [1–4,9] according to which the
resistance tensor scales as Ruv � Ruv�L=
� for a sample of
finite size L. The quantum phase coherence length sets the
effective sample size and from its temperature dependence
of the T�p=2 form [3,4,9] one obtains Ruv � Ruv�jB�
BcjT

���, the scaling function of both the longitudinal
resistance Rxx and the Hall resistance Rxy. Approaching
zero temperature, the derivative of the Hall resistance Rxy
taken at Bc diverges as a power law �dRxy=dB�jB�Bc /
T��, while the half width for the longitudinal resistance
Rxx vanishes as 
B / T�, where the exponent � is ex-
pressed as � � p=2�.

The first experiment on electrons confined to the inter-
face of InGaAs-InP heterostructures found � � 0:42 [2].
Considering p � 2 [10–12], the exponent � is found to be
2.4, a value independently obtained by subsequent theo-
retical calculations [3,4,13–17]. However, later studies in
other experimental systems raised doubts about the univer-
sality of the critical exponent. In the silicon metal-oxide-
semiconductor field-effect transistor (MOSFET) systems,
� was measured to range from 0.16 to 0.65 [18]; in GaAs-
AlGaAs heterostructures, � was found to vary from 0.28 to
0.81 [19,20] or to be totally absent [21]. These measure-
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ments show that � is sample dependent and even varies for
different transitions in a single sample. On the other hand,
it has been long appreciated that the nature of disorder in
the various systems mentioned above is fundamentally
different [18,20,22,23]. While the disorder in Si-
MOSFET and GaAs-AlGaAs systems is dominated by
long-ranged ionized impurity potentials [24], there is a
considerable contribution to the disorder from the short-
range fluctuations of the alloy potential in the InGaAs-InP
system [25], and the range of disorder seems to play an
important role in the physics of the transition.

We propose a new approach to the fundamental problem
of the plateau-to-plateau transition in IQHE, an approach
that is focused on the nature of the scattering potential.
More specifically, we have demonstrated experimentally
that the random alloy potential in a two-dimensional sam-
ple is T independent and depends on the alloy concentra-
tion only. We are able to measure directly the alloy
scattering potential and determine the strength of the alloy
disorder relative to the disorder that arises from the long-
range Coulomb force of charged impurities. Power-law
scaling with the exponent � � 0:42 is found only for
various samples in which disorder is dominated by the
short-range alloy potential fluctuations. The universality
of the transition is thus firmly established in the short-range
disordered regime.

The samples used in this work are based on the
GaAs-Al0:32Ga0:68As heterostructure, a two-dimensional
electron system of high mobility (ne � 1:2� 1011=cm2,
� � 3:7� 106 cm2=Vs). By introducing a small amount
of Al into the GaAs during the growth process we obtain
AlxGa1�xAs-Al0:32Ga0:68As heterostructures [26]. A series
of nine samples were grown with different Al concentra-
tion x by exactly the same molecular-beam epitaxy pro-
cess. The Al content x is determined by controlling the
growth rates of Ga and Al, which are calibrated by reflec-
tion high-energy electron diffraction technique oscilla-
tions. The relative error of x values is within 1%. The x
value, the electronic density ne, and mobility � of each
sample are summarized in Table I. In these samples, elec-
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FIG. 1 (color online). (a), (b) The longitudinal resistance Rxx
and Hall resistance Rxy at different temperatures for the sample
with x � 0:85%. In this plot, � denotes the Landau level filling
factors. (c), (d) The transition between the plateaus of � � 4 and
� � 3. A critical magnetic field Bc � 1:40 T is observed.

FIG. 2 (color online). �dRxy=dB�jB�Bc vs T for the 4-3 tran-
sition. From down to up, x � 0, 0.85%, 4.1%, respectively. Data
of different x has been shifted vertically in a log-log scale for a
clear comparison. Scaling exponents � are obtained from linear
fits.

TABLE I. Sample properties. The Al concentration x, the
electron density ne and mobility �, the ratio � between the alloy
and the background scattering rates at 0.3 K, and the scaling
exponent � of four transitions. There are two wafers with x �
0:85%, and the three pieces A, B, and C were cut from the first
one.

x ne � � �
% 1011= cm2 106 cm2=Vs 6-5 5-4 4-3 3-2

0 1.13 3.7 0 0.58 0.58 0.57
0.21 1.32 2.05 0.8 0.57 0.56 0.58
0.33 1.25 1.62 1.3 0.49 0.50 0.49
0.85 A 1.16 0.89 3.3 0.43 0.42 0.42 0.41

B 0.42 0.41 0.42 0.42
C 0.42 0.42 0.42 0.41

0.85 1.18 0.91 3.2 0.41 0.42 0.42 0.42
1.4 1.14 0.56 5.6 0.43 0.43 0.42 0.42
1.9 1.26 0.46 0.49 0.49 0.50 0.51
2.6 1.22 0.34 0.58 0.60 0.59 0.58
4.1 0.83 0.20 0.58 0.57
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trons accumulate on the AlxGa1�xAs side of the interface
and experience alloy potential fluctuation around the Al
atoms, which has been characterized in Ref. [26]. The
amplitude of the alloy potential fluctuation was measured
to be 1.13 eV, 3 orders of magnitude larger than the
background potential fluctuation due to ionized impurities;
however the range of the alloy potential fluctuations is only
of the atomic size, 3 orders of magnitude smaller as com-
pared to that of the ionized impurities [24,26]. The alloy
potential can therefore be modeled as an uncorrelated �-
function-like disorder, which is an ideal short-range disor-
der. We also found that the alloy scattering rate is T
independent and proportional to x�1� x�. The alloy scat-
tering rate rises with increasing Al concentration. When x
reaches 0.26%, the alloy scattering rate is about the same as
the background ionized impurity scattering rate. We no-
ticed that in samples with x > 2% the scattering rate has a
large deviation from the linear dependence on x�1� x�.
This deviation is believed to arise from the clustering of the
Al atoms, which introduces correlations in the alloy scat-
tering centers and thus renders the model of uncorrelated
�-function-like potential invalid [25]. For samples in
which the linear dependence of the scattering rate on x�1�
x� still holds, we define � as the ratio between the alloy
scattering rate 1=�a and the background scattering rate
1=�b. The parameter �, listed in Table I, is a simple
measure the dominance of the scattering due to alloy
disorder.

For each sample the longitudinal resistance Rxx and the
Hall resistance Rxy are measured simultaneously in a 3He
system from 0.3 to 1 K by using two lock-in amplifiers with
a current excitation of 1 nA and frequency of 5.7 Hz. The
sweeping rate of the magnetic field is kept sufficiently
small to acquire at least five data points within 1 mT.
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Figs. 1(a) and 1(b) show the plots of Rxx and Rxy vs B at
different temperatures for the sample with x � 0:85% and
Figs. 1(c) and 1(d) show the transition between the plateaus
around Landau level filling factors 4 and 3 (4-3 transition).
According to the finite size scaling theory mentioned above
[1–4], the critical exponent � can be extracted from the
power-law fit of �dRxy=dB�jB�Bc against the temperature.
Figure 2 shows the fitting of � of the 4-3 transition for the
samples with x � 0, x � 0:85%, and x � 4:1%. The Rxy vs
B data was smoothed by averaging within 1 mT before the
derivative was taken. We found that the exponents are all
the same for the various transitions in the same sample, but
vary from 0.42 to 0.59 for different samples. The fitting
error is �0:01. The measured values of � for different
plateau-to-plateau transitions in each sample are shown
in Table I. All the integer plateau-to-plateau transitions
we studied are around Landau levels where spin splitting
is already resolved at 1.2 K. Some high Landau level
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transitions (10-8, 12-10, 14-12) are observed spin unre-
solved at 1.2 K, but spin splitting occurs at about 0.5 K,
therefore the spin-unresolved transitions are not studied.
The transitions at lower Landau levels are also not studied
in this paper because there are fractional quantum Hall
states between those integer plateaus.

The dependence of the critical exponent � on x is plotted
in Fig. 3. Values of � determine three regimes. In the first
regime, when x is very small, � is as large as 0.58 and
decreases with increasing x. For the second regime x is
between 0.65% and 1.6% and the alloy scattering rate is
from 2.5 times to 6.5 times the background ionized impu-
rity scattering rate. In this regime, � is 0.42 for all samples.
Finally, with x larger than 1.6%, the system is driven into
the third regime and � increases again with x. From the
earlier characterization of scattering mechanisms we ob-
serve that, as shown by the large values of �, in the second
regime the disorder is dominated by the short-range alloy
potential fluctuations. We have measured five pieces of
samples from three different wafers grown in two different
years in this regime. As is listed in Table I, all the results
show consistently � � 0:42 within the fitting error �0:01.
Therefore we found that the exponent � is sample and x
independent only in the short-range disordered regime. Its
value is the same as for the InGaAs-InP system [2] and it is
consistent with theoretical calculations [3,4,13–17].

The universality observed in this second regime is fur-
ther confirmed by our observation in a larger temperature
range from 1 K down to 30 mK. Figure 4 shows the T
dependence of 
B and �dRxy=dB�jB�Bc at the 4-3 transi-
tion of the sample with x � 0:85% in this T range. The data
taken in the dilution refrigerator and the data taken from
the 3He system fall on top of each other where they overlap
in temperature. Both the power law of 
B vs T and that of
�dRxy=dB�jB�Bc vs T yield a critical exponent � � 0:42.
FIG. 3 (color online). Dependence of the exponent � on the Al
concentration x for the 4-3 transition. In the second regime, the
alloy scattering rate ��1

a is from 2.5 times to 6.5 times the
background long-range scattering rate ��1

b , and thus scattering
is dominated by alloy disorder. In this regime the exponent � is
0.42.
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These power laws over nearly two decades of temperature
confirm the scaling and define the exponent with a high
precision.

The deviation of the exponent � from the universal value
0.42 in the first and the third regimes shows that the nature
of the transition is indeed affected by the nature of the
disorder. The plateau-to-plateau transition is viewed as a
localization-delocalization transition, while the physics of
quantum localization [27] applies only within the range of
the quantum phase coherence length, which is usually
identified to be the inelastic scattering length lin [9]. In
the scaling theories, it is assured that the range of disorder
is below the length scale of lin by assuming the disorder to
be an uncorrelated �-function-like potential fluctuation
[28]. However, for samples in the first regime where x is
small, the disorder of the system is dominated by the
potential of the ionized impurities. Being screened by the
2D electrons, the Coulomb potential fluctuation becomes
slowly varying with a large correlation length of the order
of �m [24]. With the disorder range comparable with or
even larger than lin, the quantum localization crosses over
toward the classical percolation. In the second regime,
where the disorder is dominated by the short-range poten-
tial fluctuations, the transport is quantum in nature and the
universality of the plateau-to-plateau transition is restored.
In the third regime, the likely clustering of Al atoms
introduces correlations in the sample that may change the
nature of the disorder destroying therefore the universal
scaling.

In the theoretical calculations, the universal critical ex-
ponent � � 7=3 results from a network model of quantum
percolation, where the quantum phase coherence is kept in
the transport [13–17]. On the other hand, an exponent � �
4=3 was obtained with theories of classical percolation
[16,29]. Using these values of � and the � � p=2� rela-
tionship, we infer that the quantum-classical crossover
FIG. 4 (color online). Temperature scaling down to 30 mK of
the 4-3 transition for the sample with x � 0:85%. Data taken in
the dilution fridge (up-triangles) and that from the 3He system
(circles) fall on the same straight line in the log-log plot. The
slope of both curves in (a) and (b) give the critical exponent � �
0:42 with a high precision.
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effect increases the exponent � from 0.42 up towards the
classical value of 0.75. The � values we obtained in the first
and third regimes are still well below 0.75, showing that the
system is still away from an ideal classical percolation
regime.

There are other ways to explain the deviation of the
exponent � from the universal value in different samples
by putting uncertainty on the temperature exponent p [30].
The exponent p was obtained in the Fermi liquid theory to
be two and was confirmed by excitation current scaling
experiments [11,12]. In samples with a high concentration
of ionized impurities, it was proposed that the attractive
Coulomb potential of the ions may be attributed to non-
Born scattering and leads to a value of p that is larger than
2 [20,30,31]. However, in our experiments, the alloy po-
tential as a neutral disorder does not give rise to inelastic
scattering. At low temperatures, the inelastic scattering is
mostly from the contribution of the electron-electron in-
teraction [3,4,9], and the temperature exponent p should be
all the same for the samples we studied. This suggests that
the deviation of � from 0.42 we observe is from a change of
� due to a fundamental crossover effect from quantum
localization toward classical percolation.

Another approach to the universality of the plateau-to-
plateau transition is from the hopping conductivity  xx
[32] away from the critical magnetic field. In a recent
experiment [33], information of the localization length is
acquired by the T dependence of the hopping conductivity
 xx �  0 exp	��T0=T�

1=2
 assuming  0 / 1=T. However,
the 1=T dependence of  0 was not fully confirmed by the
experiments. The theory to obtain this T dependence of
hopping conductivity demands the system to be short-
range disordered as well, and we propose that the alloy
systems would be useful to test this theory.

In conclusion, we have realized 2D electron systems
where the dominant contribution of the disorder is from
the short-range alloy potential fluctuations. In such sys-
tems, the disorder can be well modeled as an uncorrelated
�-function-like potential fluctuation and the physics of
quantum localization prevails. We established the univer-
sality of the quantum Hall plateau-to-plateau transition in
this regime and found a universal critical exponent � �
0:42� 0:01. With the nature of disorder being changed
from short ranged to long ranged, a crossover effect from
quantum localization toward classical percolation is ob-
served accompanied by a substantial increase of the ex-
ponent �.
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