
PRL 94, 206801 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
27 MAY 2005
Zitterbewegung of Electronic Wave Packets in III-V Zinc-Blende Semiconductor Quantum Wells
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We study the zitterbewegung of electronic wave packets in III-V zinc-blende semiconductor quantum
wells due to spin-orbit coupling. Our results suggest a direct experimental proof of this fundamental
effect, confirming a long-standing theoretical prediction. For electron motion in a harmonic quantum wire,
we numerically and analytically find a resonance condition maximizing the zitterbewegung.
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The emerging field of spintronics has generated a large
deal of interest in the effects of spin-orbit coupling in
semiconductor nanostructures and their possible applica-
tions [1]. Spin-orbit coupling is a relativistic effect de-
scribed by the Dirac equation and its nonrelativistic
expansion [2]. In semiconductors spin-orbit coupling of
itinerant electrons is much stronger than in vacuum. This is
due to the interplay of crystal symmetry and the strong
electric fields of the atom cores [3]. In fact, the effective
models describing the band structure of III-V semiconduc-
tors have many similarities to the Dirac equation. However,
the fundamental gap between conduction and valence band
in a semicondcutor is of order an electron volt or less,
which is much smaller than the gap between solutions of
positive and negative energy of the free Dirac equation.
This observation can serve as a general heuristic explana-
tion for the importance of spin-orbit effects in semicon-
ductors [3].

Another prediction of relativistic quantum mechanics is
the zitterbewegung of electrons [2], which, however, has
not been observed experimentally yet. For free electrons,
i.e., in the absence of an external potential, such an oscil-
latory motion occurs if solutions of both positive and
negative energy of the free Dirac equation have a finite
weight in a given quantum state. In this Letter we inves-
tigate the zitterbewegung of electron wave packets under
the influence of the enhanced spin-orbit coupling in III-V
zinc-blende semiconductor quantum wells. Strong spin-
orbit coupling generally requires large gradients of the
external potential, as they are provided by the heavy
atom cores in such systems.

An important effective contribution to spin-orbit cou-
pling in such systems is the Rashba term which is due to
structure-inversion asymmetry of the confining potential
and takes the following form [4]:

H R � ��= �h��px�
y � py�

x�; (1)

where ~p is the momentum of the electron confined in a
two-dimensional geometry, and ~� is the vector of Pauli
matrices. The Rashba coefficient � is essentially propor-
tional to the potential gradient across the well and therefore
tunable by an external gate. Thus, the single-particle
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Hamiltonian is given by H � ~p2=2m�H R, where m
is the effective band mass. The components of the time
dependent position operator

~r H�t� � eiH = �h ~r�0�e�iH = �h (2)

in the Heisenberg picture read explicitly
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where the operators ~p and ~� on the right hand sides are in
the Schrödinger picture and therefore time independent.

We now proceed by evaluating the above time dependent
position operators within a Gaussian wave packet with
initial spin polarization along the z direction perpendicular
to the quantum well,

h ~rj i �
1

2�
d����
�

p
Z
d2ke��1=2�d2� ~k� ~k0�2ei ~k ~r

�
1
0

�
: (5)

Clearly we have h j ~rj i � 0, h j ~pj i � �h ~k0, and the
variances of the position and momentum operators are
��x�2 � ��y�2 � d2=2 and ��px�2 � ��py�2 � �h2=2d2.
Thus, the group velocity of the wave packet is given by
�h ~k0=m, while its spatial width is described by the parame-
ter d with the minimum uncertainty product typical for
Gaussian wave packets, �px�x � �py�y � �h=2.
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A direct calculation gives
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In the above expression, ’ is a usual polar angle in the xy
plane, and q is a dimensionless integration variable. The
time dependence in the integral can be viewed as a zitter-
bewegung the electron performs under the influence of
spin-orbit coupling. Clearly, this integral contribution van-
ishes for k0y � 0, i.e., if the group velocity is along the x
direction. More generally, one finds that

h j ~k0 ~rH�t�=k0j i � �hk0t=m; (7)

which means that the zitterbewegung is always perpendicu-
lar to the group velocity of the wave packet. Let us there-
fore concentrate on the case k0x � 0. By expanding the
exponential containing the trigonometric functions one
derives
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Thus, the amplitude of the zitterbewegung is proportional
to the wavelength of the electron motion perpendicular to
it, and the oscillatory zitterbewegung changes its sign if the
translational motion is reversed. If the product dk0y is not
too large, dk0y & 1, only low values of the summation in-
dex n lead to substantial contributions, and the Gaussian
factor in the integrand suppresses contributions from large
values of q. Thus, a typical scale of this integration variable
leading to sizable contributions is q � 1=

���
2

p
. Thus, a

typical time scale in the integrand is T �
���
2

p
� �hd=�, and

when averaging the zitterbewegung over times scales sig-
nificantly larger than T, the cosine term drops, giving

h jxH�t�j i � �1=2k0y�
1� exp��d2k20y��; (9)

i.e., the time-averaged guiding center of the wave packet is
shifted perpendicular to its direction of motion. Note that
the zitterbewegung is absent for k0y � 0 [5].

In the opposite case dk0y � 1 the Gaussian approaches
a � function. In this limit one finds (for k0x � 0)

h jxH�t�j i � �1=2k0y�
1� cos�2�k0yt= �h��: (10)

Here the frequency of the zitterbewegung is � � 2�k0y= �h,
and the guiding center of the wave packet is also shifted
in the direction perpendicular to its group velocity.
Note that �h� is the excitation energy between the two
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branches of the Rashba Hamiltonian H at a given mo-
mentum ~k � k0y ~ey.

The zitterbewegung of an electron in a quantum well
as described above is naturally accompanied by a broad-
ening of the wave packet, where the dominant contribu-
tion stems from the dispersive effective-mass term in the
Hamiltonian. Such a broadening might pose an obstacle for
experimentally detecting the zitterbewegung. However, the
broadening can be efficiently suppressed and limited if the
electron moves along a quantum wire. In fact, the motion
of electrons in quantum wells is generally under better
control if additional lateral confinement is present. We
therefore consider a harmonic quantum wire along the y
direction described by H � ~p2=2m�m!2x2=2�H R,
where the frequency ! parametrizes the confining poten-
tial perpendicular to the wire [6,7]. For this case exact
analytical progress as above does not seem to be possible,
and we therefore follow a numerical approach combined
with an approximate analytical study. To be specific, we
consider an electron with a given momentum k0y along the
wire and injected initially into the lowest subband of the
confining potential with the spin pointing upwards along
the z direction, i.e., the initial wave function for the x
direction is a Gaussian whose width is determined by the
characteristic length � �

��������������
�h=m!

p
of the harmonic confine-

ment. In our numerical simulations of the exact time
evolution we find again a zitterbewegung perpendicular
to the electron motion along the wire with the width of
the wave function across the wire being limited by the
confining potential. Moreover, the amplitude of the zitter-
bewegung becomes maximal if the resonance condition
j �h�j � j2�k0yj � �h! is fulfilled. This general finding is
illustrated in Fig. 1 where the wave number along the wire
is fixed to be k0y� � 5 and the Rashba parameter � is
varied around the resonance condition. Equivalent obser-
vations are made if the Rashba coupling is fixed while the
wave number k0y is varied. In Fig. 2 we have plotted the
amplitude of the zitterbewegung as a function of �=! �

2�k0y= �h! for different values of the wave number k0y
along the wire. In this range of parameters, the resonance
becomes narrower with increasing k0y, while its maximum
value is rather independent of this quantity and remarkably
well described by �=

���
2

p
.

A qualitative explanation for this resonance can be given
by writing the Hamiltonian in the form H � H 0 �H 1

with H 0� �h!�a�a�1=2�� �h2k20y=2m��k0y�x, H 1�

�i
����������������
�hm!=2

p
��=�h��a�a���y, and a, a� being the usual

harmonic climbing operators [7]. The zitterbewegung is
induced by the perturbation H 1 which can act most effi-
ciently if the unperturbed energy levels of H 0 are degen-
erate having opposite spins. This is the case at
j2�k0yj � �h!.

Another way to understand this resonance condition is to
consider a truncated model where the Hamiltonian has
been projected onto the lowest to orbital subbands, an
1-2
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FIG. 1. Zitterbewegung of an electron in a harmonic quantum
wire perpendicular to the wire direction. The wave number k0y
for the motion along the wire is k0y� � 5. The amplitude of the
zitterbewegung is maximal at the resonance 2�k0y � �h!
(middle panel).
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approximation which is known to give very reasonable
results for the low-lying energy spectrum of the wire [7].
For a given wave number k0y the truncated Hilbert space is
spanned by the states j0; "i, j0; #i, j1; "i, j1; #i, where the
arrows denote the spin state with respect to the z direction,
and 0 and 1 stand for the ground state and the first excited
state of the harmonic potential, respectively. When apply-
ing the transformation

U �
1���
2

p

1 1 0 0
0 0 1 �1
1 �1 0 0
0 0 1 1

0
BBB@

1
CCCA; (11)

the projected Hamiltonian and in turn the time evolution
operator become block diagonal,
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FIG. 2. Amplitude of the zitterbewegung perpendicular to the
wire direction as a function of �=! � 2�k0y= �h! for different
values of the wave number k0y along the wire.
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one obtains for the initial state j0; "i the following time
dependent expectation value:
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At resonance, �h! � �2�k0y, we have  z
� � 0, and if  x

�

can be neglected compared to  z
� (which is the case for

large enough k0y) the amplitude of the zitterbewegung is
approximately �=

���
2

p
, in accordance with the numerics.

We note that the above resonance condition can be
reached by tuning either the Rashba coupling or the wave
vector of the electron injected into the wire. For instance,
for a wire of width � � 50 nm and the band mass of InAs
being 0.023 in units of the bare electron mass, one has
�h! � 1 meV. Typical values for the Rashba parameter �
in InAs are of order 10�11 meV [8–14] leading to a wave-
length �0y � 2�=k0y � 100 nm at resonance. For GaAs,
the band mass is larger while the Rashba coefficient is
typically an order of magnitude smaller than in InAs
[15], giving a wavelength of a few 10 nm at resonance
for � � 50 nm.

We propose that electron zitterbewegung in semiconduc-
tor nanostructures as described above can be experimen-
tally observed using high-resolution scanning-probe
microscopy imaging techniques as developed and dis-
cussed in Refs. [16,17]. As a possible setup, a tip suffi-
ciently smaller than the width of the wire can be moved
along the wire and centered in its middle. For an appro-
priate biasing of the tip, the electron density at its location
is depleted leading to a reduced conductance of the wire.
Since the amplitude of the zitterbewegung reflects the
electron density in the center of the wire, the zitterbewe-
gung induces beatings in the wire conductance as a func-
tion of the tip position. These beatings are most pro-
nounced at the resonance; see Fig. 1. Note that the oscil-
lations shown there as a function of time can be easily
converted to the real-space y coordinate by multiplying the
abscissa by �hk0y=m. Generally we expect spin-orbit effects
in STM experiments to be more pronounced in the pres-
ence of additional confinement such as in a quantum wire.
1-3
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Moreover, let us consider spin-orbit coupling of the
Dresselhaus type [18–20],

H D � �"= �h��py�y � px�x�; (16)

which is due to the bulk-inversion asymmetry in zinc-
blende semiconductors, and the coefficient " is determined
by the well width along with a material constant [19,20].
Here the components of the time dependent position op-
erator of an electron in a quantum well read
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In much the same way as above, these expressions lead to a
zitterbewegung of electronic wave packets in a direction
perpendicular to their group velocity. If both Rashba and
the Dresselhaus spin-orbit coupling are present, the direc-
tional dependence of the zitterbewegung is more compli-
cated, which can be understood in terms of the anisotropic
dispersion relations arising in this case [21]. The corre-
sponding expressions are rather lengthy and shall not be
detailed here. However, in the case where the Rashba
coefficient is tuned to be equal in magnitude to the
Dresselhaus term, � � �", the zitterbewegung is absent.
This is due to the additional conserved quantity which
arises at this point and cancels the many effects of spin-
orbit coupling [21,22].

Finally, we mention that similar expressions can be
derived for the case of heavy holes in the p-type valence
band of III-V semiconductors (as opposed to s-type elec-
trons studied so far) being subject to spin-orbit coupling
due to structure-inversion asymmetry [23,24]. Again, the
zitterbewegung of a wave packet with its spin pointing
initially in the z direction is perpendicular to the group
velocity.

In conclusion, we have studied zitterbewegung of elec-
tronic wave packets in III-V zinc-blende semiconductor
quantum wells in the presence of spin-orbit coupling of the
Rashba and Dresselhaus type. Our results suggest the
possibility of a direct experimental proof of this oscillatory
motion due to relativistic effects, confirming a long-
standing theoretical prediction. Similar results can be de-
rived for the case of heavy holes in quantum wells under
the influence of Rashba spin-orbit coupling. A very prom-
20680
ising route for such experiments are high-resolution imag-
ing techniques developed recently [16,17]. If the spin of
the electron is initially aligned along the z direction, the
zitterbewegung is always perpendicular to the group ve-
locity of the wave packet. For possible experiments quan-
tum wires are particularly attractive. For this case we find a
resonance condition maximizing the zitterbewegung. This
resonance can be reached by tuning either the Rashba
coupling or the electron velocity along the wire.
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