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Complex Oscillations and Chaos in Electrostatic Microelectromechanical Systems
under Superharmonic Excitations
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In this Letter, the formation of complex oscillations of the type 2n M oscillations per period at the Mth
superharmonic excitation is reported for electrostatic microelectromechanical systems. A dc bias (beyond
‘‘dc symmetry breaking’’) and an ac signal (at the Mth superharmonic frequency) with an amplitude
around ‘‘ac symmetry breaking’’ gives rise to M oscillations per period or period M response. On
increasing the ac voltage, a cascade of period doubling bifurcations take place giving rise to 2n M
oscillations per period. An interesting chaotic transition (1-band and 2-band chaos) is observed during the
first period doubling bifurcation. The nonlinear nature of the electrostatic force is shown to be responsible
for the reported observations.
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FIG. 1 (color online). dc symmetry breaking in x- _x phase plot
and corresponding bending in x- 	x phase plot differentiating
linear (30 V dc) and nonlinear state (72 V dc).
Nonlinearities in microelectromechanical systems
(MEMS) can arise from various sources such as spring
and damping mechanisms [1], resistive, inductive, and
capacitive circuit elements [2], and surface, fluid, electro-
static, and magnetic forces [3]. Nonlinear dynamic phe-
nomena like spring hardening or softening, jump
phenomenon, hysteresis [4], and period doubling route to
chaos at resonant excitation [3,5] have been observed in
electrostatic MEMS. In this Letter, new nonlinear dynamic
properties of electrostatic MEMS under superharmonic
excitations are presented.

Dynamic analysis of electrostatic MEMS requires the
coupled solution of the electrical, fluidic, and mechanical
equations. In the absence of any free charges, from Gauss’s
law, the Laplace equation is obtained which is solved for
the electrostatic potential [6], i.e.,

r2� � 0 in �; (1)

where � is the potential field in the dielectric medium �
(air in this case) surrounding the conductors and elec-
trodes. A boundary integral formulation (see [7] for de-
tails) of Eq. (1) is used to compute the surface charge
density � on the conductors. The electrostatic pressure
Pe acting on the microstructure can be computed from �
as Pe � �2=2	, where 	 is the permittivity of air. Air
damping between the MEM structure and the ground elec-
trode is modeled using squeeze film damping. Considering
compressible slip flow, the isothermal Reynolds squeeze
film equation can be written as (see [8] for details)

r � ��1� 6K�h3PfrPf� � 12

@�Pfh�

@t
; (2)

where h is the gap between the MEM structure and the
ground electrode, Pf is the air pressure, and 
 is the air
viscosity. K � �=h is the Knudsen number and � is the
mean free path of air. Equation (2) is obtained (see [8] for
details) from the Navier-Stokes equation by accounting for
05=94(20)=204101(4)$23.00 20410
the slip correction and by neglecting the fluid velocity and
the variations of all physical quantities in the height
direction.

The mechanical deformation of the MEM structure due
to the electrostatic and fluidic forces is obtained by per-
forming transient 2D large deformation elastic analysis of
the microstructure (see [9] for details)

� 	u�r � �FS� � 0; (3)

where � is the material density, 	u is the acceleration vector,
F is the deformation gradient, and S is the second Piola-
Kirchhoff stress. The inertial force is counterbalanced by
the restoring force due to structural stiffness in the absence
of any body forces and material damping within the struc-
ture. Appropriate displacement and surface traction bound-
1-1  2005 The American Physical Society
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FIG. 2 (color online). ac symmetry breaking in x- _x phase plot
for 72 V dc bias.
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FIG. 3 (color online). Three oscillations per period and seven
oscillations per period at f0=3 and f0=7 excitations, respectively.
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ary conditions (from electrostatic and fluid damping analy-
sis) are applied. Equations (1)–(3) are solved in a self-
consistent manner [9] and are termed as full scale simula-
tions in this Letter.

A 80 �m� 1 �m� 10 �m (length � height � width)
Si fixed-fixed beam MEM device, 1 �m over a ground
plane is considered (see [9] for more details on the geome-
try of the MEM device). The dynamic pull-in voltage of the
microstructure is 73 V. The microstructure is first brought
to a steady nonlinear state by applying a dc voltage close to
the dynamic pull-in voltage. Symmetry breaking [10] in
the x- _x phase plot or bending in the x- 	x is a good indicator
of this nonlinearity as shown in Fig. 1. No symmetry
breaking (spirals inward in a symmetric fashion) or bend-
ing (spirals inward following a straight line) is observed at
small dc voltages (e.g., 30 V) indicating a linear state. On
the other hand, when the dc voltage is close to the pull-in
voltage (e.g., larger than 69 V dc), the system exhibits
symmetry breaking and bending. This symmetry breaking
is termed as dc symmetry breaking in this Letter.

Once the microstructure reaches a stable nonlinear state,
it is excited with an ac voltage (Vac) with a frequency
f0=M, where f0 is the resonant frequency of the micro-
structure at the applied dc bias and M is a natural number.
For small values of Vac, normal one oscillation per period is
observed for allM. As Vac is increased, a second symmetry
breaking, termed as the ac symmetry breaking, is observed
as shown in Fig. 2 for a 72 V dc bias (f0 � 0:763 MHz)
and M � 1. A small ac voltage (e.g., 0.5 V ac) does not
show any symmetry breaking (elliptical shape), whereas an
ac voltage close to the ac pull-in voltage (e.g., 2 V ac)
shows ac symmetry breaking (oval shape). Around this ac
voltage, M oscillations per period or period M response is
observed for an excitation frequency of f0=M. Figure 3
shows 3 and 7 oscillations per period responses, for a 70 V
dc bias at 7 Vand 7.17 Vac voltages (both these ac voltages
are in the ac symmetry breaking region for 70 V dc),
respectively. f0 � 0:943 Mhz at 70 V dc. Up to 8 oscil-
lations per period are observed in the present system.

In order to understand the reason for the formation ofM
oscillations per period at f0=M, an analytical mass-spring-
damper (MSD) model [5] ( 	x� 2� _x� x � Fe=mg!2

0) for
the MEM system is considered. The parameter values are
20410
� � 0:1009, !0 � 1:1981 MHz, and m � 1:864�
10�12 kg for the Si fixed-fixed beam MEM device. These
parameters have been computed analytically using linear-
ized Reynolds squeeze film damping [11] and Euler’s beam
theory [12]. The electrostatic force Fe can be written as
[13]

Fe�
	AV2

2g2�1�x�2
�
	AV2

2g2
	1�2x�3x2�4x3����
 (4)

where g is the gap in the undeformed state between the
microstructure and the ground electrode and A is the area
of the microstructure surface facing the ground electrode.
The series expansion of Fe indicates that the MSD model is
the general form of the Duffing equation [14] having an
infinite series of x with time-varying coefficients in the
forcing term. The formation of two oscillations per period
at f0=2, and three oscillations per period at f0=3, has been
shown for the Duffing equation due to the presence of
quadratic and cubic terms of the normalized displacement
x [14]. The MSD model has even higher-order terms of x
from the electrostatic force Fe, which can be attributed for
the formation of higher-order oscillations. The MSD model
is analyzed using the harmonic balance method [14] to
explain the formation of M oscillations per period.
Expressing the displacement x as a Fourier series x �
�NTM�1XM exp�jM!t�, a closed form expression for XM
can be obtained. NT is the number of harmonics consid-
ered and ! � 2 f. Figure 4(a) shows the variation of X1,
X2, and X3 with the frequency of excitation. It is observed
that the value of XM peaks at f � f0=M, making the ratio
XM=X1 maximum at that frequency. This results in the
formation of M oscillations per period at f � f0=M [14].
The formation of M oscillations per period at f � f0=M
takes place through the formation of lower-order oscilla-
tions with increasing ac voltage, as can be inferred from
1-2
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FIG. 4 (color online). (a) Variation of X1, X2, and X3 with
excitation frequency. (b) Variation of the ratio of the amplitudes
with the harmonic number.
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Fig. 4(a). A two oscillation per period response is formed
before the emergence of the three oscillation per period
response at f0=3 with increasing ac voltage as X2=X1 is
significant even at smaller ac voltages as opposed to
X3=X1, which is significant only at higher ac voltages.
Similar observations can be made for higher values of M.
The absence of very high-order oscillations (large M) can
be explained by the fact that the ratio XM=X1 decreases
rapidly with increasing M as shown in Fig. 4(b). As the
formation of the M oscillations per period response can be
explained from the MSD model, it can be concluded that
the nonlinearity from electrostatics is responsible for the
reported observations and not the mechanical and/or the
fluidic nonlinearities as these are neglected in the MSD
model.

As the ac voltage is increased further beyond the ac
symmetry breaking point, a cascade of period doubling
bifurcations is observed, resulting in the formation of 2n M
oscillations per period at the excitation frequency of f0=M.
Figure 5 shows a sequence of period doubling bifurcations,
n � 0, 1, 2, 3 for a three oscillation per period response at
f0=3 excitation for increasing ac voltages of 5.9, 5.99,
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FIG. 5 (color online). Sequence of period doubling bifurca-
tions at f0=3.
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6.003, and 6.005 V, respectively, at 71 V dc bias (f0 �
0:885 MHz). A 71 V dc bias is also in the dc symmetry
breaking region for the system. The phase plot and the
Poincaré map for the chaotic state observed on further
increasing the ac voltage to 6.01 V is shown in Fig. 6.
The existence of chaos is further validated by the compu-
tation of the largest Lyapunov exponent (�) of the system
from the time series data obtained from the numerical
simulation using the software package TISEAN [15]. A
positive value of � � 0:09716 was obtained at 6.01 V ac.
A similar set of observations were made for other values of
M thereby showing the existence of 2n M oscillations per
period.

Investigations reveal that both dc and ac symmetry
breaking are needed for chaos to set in through the period
doubling route. At small dc bias, applying a large ac
voltage causes ac symmetry breaking but no period dou-
bling and chaos was observed. The MSD model yielded
similar observations, indicating electrostatic force as the
cause of these period doubling bifurcations and chaos. The
development of chaos can be further investigated by study-
ing the behavior of the overall nonlinear force f�x� acting
on the microstructure using the MSD model.

f�x� � x�
	AV2

2g3m!2
0

	2x� 3x2 � 4x3 � � � �
: (5)

As the dc voltage is increased (10 to 60 V in steps of 10 V)
in the MSD model, f�x� develops a smooth bend in its
shape as shown in Fig. 7. The circular markers denote the
points where f0�x� � 0 (changes from positive to nega-
tive). The value of f�x� is computed for the maximum
displacement x that is obtained for a combined dc and ac
signals. For small dc voltages, where the bend is sharp, the
structure becomes unstable as soon as it crosses the f0�x� �
0 point and no period doubling route to chaos is observed.
However, it appears that a large dc bias results in the
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FIG. 6 (color online). (a) Phase plot and (b) Poincaré map for
chaos at f0=3.

1-3



0.2228 0.2228 0.2228
−0.0878

−0.0878

−0.0878
Period 1

V
el

oc
ity

 (
m

/s
)

0.2372 0.2375 0.2378

0.022

0.024

0.026

0.028

1−band chaos

V
el

oc
ity

 (
m

/s
)

Displacement (µm)

0.1989 0.2029 0.2069

0.62

0.64

0.66

2−band chaos

V
el

oc
ity

 (
m

/s
)

Displacement (µm)
0.18 0.2 0.22

0.55

0.6

0.65

0.7

Period 2

V
el

oc
ity

 (
m

/s
)

Displacement (µm)

5.9 V ac 5.95 V ac 

5.984 V ac 5.99 V ac

Displacement (µm)

FIG. 8 (color online). Poincaré maps for transition from pe-
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formation of a smooth bend in f�x� where the structure is
stable for a small region after the f0�x� � 0 point. It is
observed from Fig. 7 that the period doubling route to
chaos is located in this region for such large dc voltages.
From Fig. 7, it can be seen that f�x� is more sensitive to x
(higher nonlinearity) after the bend and much less sensitive
to x (lower nonlinearity) before the bend. This indicates
that the system undergoes qualitative changes during the
bend formation and goes from a state of less sensitivity on
x to a state of high sensitivity on x to instability. As a result,
the period doubling bifurcations (qualitative changes in the
system) can be expected to be found in the bend region. It
is to be noted that a higher voltage (around 70 V dc) was
needed in the full scale simulation as compared to 60 V dc
in the MSD to observe chaos. This is due to the presence of
mechanical and fluid damping nonlinearities in the full
scale simulations. The change in the structural stiffness
and damping coefficient with deformation gives rise to
mechanical and fluidic nonlinearities. They are assumed
to be a constant in the MSD model.

The first period doubling bifurcation is found to take
place in a chaotic manner in the full scale simulation (this
was also observed using the MSD model). Figure 8 shows
the formation of period 2 (six oscillations per period) from
period 1 (three oscillations per period) in a sequence, with
increasing ac voltage (5.9, 5.95, 5.984, and 5.99 V) at f0=3.
Period 1 gives rise to a 1-band chaotic attractor, which in
turn gives rise to a 2-band chaotic attractor. The 2-band
chaos in turn collapses to a stable period 2 orbit. This
observation was made for the other superharmonic excita-
tions as well. The first Lyapunov exponent was found to be
positive during this period doubling, indicating a chaotic
transition.

In conclusion, complex oscillations and chaos under
superharmonic excitation and chaotic transition during
the first period doubling bifurcation are reported for elec-
trostatic MEMS. dc and ac symmetry breaking and bend-
ing of the overall nonlinear force are shown as
prerequisites for the reported observations.
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