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Nonlocality in Imaging
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We show how an effective nonlocality in imaging can lead to the sampling of a spatial region which is
not significantly illuminated by an imaging probe. The nonlocality is embodied in the effective nonlocal
potential describing inelastic scattering which occurs when coupled channel Schrödinger equations are
reduced to a single integro-differential equation. The context in which this prediction will be illustrated is
atomic resolution imaging based on energy-loss spectroscopy in scanning transmission electron
microscopy.

DOI: 10.1103/PhysRevLett.94.203906 PACS numbers: 42.30.Va, 61.14.Dc
Since the 1964 analysis of John Bell (Bell’s theorem) it
is widely recognized that quantum theory is nonlocal in the
sense that there is no way for the results in one region of
space to be independent of choices made in another spa-
tially separated region [1]. In this Letter we predict and
elucidate an analogous phenomenon where it is demon-
strated that an effective nonlocality in imaging can lead to
the sampling of a spatial region which is effectively not
illuminated by an imaging probe.

The context in which this phenomenon will be illus-
trated is atomic resolution imaging based on electron
energy-loss spectroscopy (EELS) in scanning transmission
electron microscopy (STEM) [2,3], specifically core-loss
spectroscopy of weakly bound electrons. The theoretical
framework in which such imaging is described starts with
the Schrödinger equation [4,5]�

� �h2

2m
r2 �H��� �H0�r; ��

�
��r; �� � E��r; ��; (1)

where r is the coordinate of the incident electron and � �
fr1; . . . ; rNg denotes the coordinates of the particles (nuclei
or electrons) in the specimen being imaged. The term H���
is the Hamiltonian for all the particles in the specimen and
H0�r; �� describes the interaction of the incident electron
with the particles in the specimen. The total energy of the
system E � E0 � "0, where E0 is the energy of the inci-
dent electron in vacuum and "0 is the initial energy of the
specimen. We assume the wave function can be expanded
in the form

��r; �� �
X
n

 n�r�an���: (2)

The normalized wave function an��� represents the nth
stationary state of the specimen (of energy "n) and satisfies
H���an��� � "nan���. The initial state is denoted a0���,
with  0�r� then describing the elastic scattering.
Furthermore  n�r��n � 0� describes the inelastic scatter-
ing by which the state of the specimen is changed from
a0��� to an���. The energy associated with  n�r�, i.e., after
the inelastic scattering event, is En � E� "n � h2k2n=2m,
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where kn is the magnitude of the wave vector of the
scattered electron. The energy loss of the incident fast
electron after an inelastic scattering event which excites
the crystal from the initial to the nth excited state is Eloss �
"n � "0.

Using Eq. (2) we may recast Eq. (1) in the form of a set
of coupled differential equations as follows:�
r2�4�2k2n�
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(3)

where

H0
nm�r� �

Z
a�n���H0�r; ��am���d�: (4)

We now make the common assumption that, in Eq. (3),
only terms with m � 0 give a significant contribution, i.e.,
only excitations from the ground state contribute signifi-
cantly to the scattering �H0

n0�r� 
 Hnm�r��m � 0��. Then
the set of coupled differential equations reduces to a single
integro-differential equation of the form
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where the complex nonlocal kernel representing inelastic
scattering of the fast electron is given by

A�r; r0� � �
m
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e2�ikmjr�r0j

jr� r0j
: (6)

In STEM, imaging can be based on monitoring the cross
section as a function of probe position R for inelastic
scattering of a particular kind, for example, thermal diffuse
scattering or electron core-loss spectroscopy. Using Eq. (5)
and conservation of electron flux it can be shown that the
cross section for the relevant inelastic scattering events can
be written in the form [5]
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FIG. 1 (color online). (a) Simulated STEM image obtained by
scanning along [100] with a 200 keV probe formed with a
50 mrad aperture and incident along the [011] zone axis of a
100 Å thick slab of SiC. Electrons that have ionized a K-shell
electron in C are detected in an axial detector with acceptance
semiangle of 10 mrad and an energy window of 40 eV. The result
is expressed as a fraction of the incident electron flux, i.e.,
��R�=A. (b) Evolution of the intensity of the incident probe as
a function of depth when the probe is positioned above the Si
column. (c) The integral along z of the intensity shown in (b)
(presented as an average) is compared with the integrated result
obtained when the probe is above the C column.
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where V is the volume of the specimen and

W�r; r0� � i�A�r; r0� � A��r0; r�� (8)

is an effective nonlocal potential representing the inelastic
scattering. From Eq. (2.14) in Ref. [5] it follows, with some
approximation and redefining the Fourier coefficients, that

W�r; r0� �
h2k0
2�mV

X
h;g

�h;ge2�i�k0�h��re�2�i�k0�g��r0 : (9)

Here g and h are variables in the Fourier transform space.
The coefficients �h;g are the inelastic scattering coeffi-
cients, often referred to as the mixed dynamic form factors,
the calculation of which is described in detail elsewhere
[6,7]. We now assume that the incident electron beam has
wave vector k0 in the z direction and also that we can make
a projected potential approximation. Denoting a vector in
the x� y plane by r?, we may rewrite Eq. (7) in the form
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h2k0

Z t

0

Z t
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exp�2�ik0�z� z0��

�
Z
A

Z
A
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0�

� dr?dr0?dzdz
0; (10)

for a slablike specimen of area A and thickness t and where
the effective potential W�r?; r0?� now has the form

W�r?; r0?� �
h2k0

2�mAt

X
h;g

�h;ge
2�ih�r?e�2�ig�r0

? : (11)

Incoherence of the contributions to the cross section
from inelastic scattering at different atomic sites in the x�
y plane is catered for in the construction of the �h;g. We
now enforce incoherence between different layers along
the z direction [8] by inserting t��z� z0� in Eq. (10).
Insertion of the � function on its own yields a cross section
per unit length. The factor of t gives the cross section in
units consistent with Eq. (7). We then obtain

��R� �
2�mt

h2k0

�
Z t

0

Z
A

Z
A
 �
0�R; r?; z�W�r?; r0?� 0�R; r0?; z�

� dr?dr0?dz: (12)

This cross section can be evaluated in a multislice formu-
lation by discretizing along the z direction. Doing this and
using Eq. (11), Eq. (12) reduces to Eq. (A.7) in Ref. [9]
(noting that the result there is a cross section per unit
volume).
20390
Let us now consider STEM using 200 keV electrons
incident along the [011] zone axis of a slab of SiC, which
we are illuminating with an aberration free probe formed
using a 50 mrad aperture (planned for the next generation
of microscopes). We calculate, using a frozen phonon
model [9,10], the variation with probe position in the
number of electrons which have ionized an electron in
the C K shell and detected in an axial EELS detector
with acceptance semiangle 10 mrad and an energy window
of 40 eV. In Fig. 1(a) we show a line scan along the [100]
direction. The locations of Si columns are indicated by
gray circles and of C columns by black circles.
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FIG. 2 (color online). (a) Simulated STEM image obtained by
scanning along [100] with a 200 keV probe formed with a
25 mrad aperture and for [100] systematic row conditions on a
100 Å thick slab of SiC. Electrons that have ionized a K-shell
electron in C are detected in an axial detector with acceptance
angle of 10 mrad and an energy window of 40 eV. (b) Evolution
of the probability density of the incident probe as a function of
depth in the slab when the probe is positioned above the Si
column. (c) The integral along z of the probability density shown
in (b) is compared with the integrated result obtained when the
probe is above the C column. (d) A STEM image obtained for
the same conditions as in (a) except that the x rays arising from
ionization are detected, rather than the energy-loss electrons.
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When the probe is situated above the Si column then one
is obtaining a signal which would usually be interpreted
either as the presence of C atoms in that column or a strong
‘‘cross talk’’ signal from the adjacent C column. The
former is not true and by the latter we mean that the probe
has spread significantly onto the C column as it channels
through the crystal. However, plotting the probe wave
function within the crystal as a function of depth we find
that this is simply not the case, as can be seen in Fig. 1(b).
The integrated intensity for the probe on both the Si and C
columns shown in Fig. 1(c) confirms this. We are in fact
obtaining a larger signal on the Si column, when there is
negligible (integrated) intensity on the C column, than
when the probe is on the C column itself and there is
considerable flux on that column.

How can this remarkable phenomenon be explained? We
show that it is due to the nonlocal nature of the effective
potential given by Eq. (11). This potential is hard to visual-
ize; it is a four dimensional function. Therefore we will
assume that the nonlocal potential varies only along the
[100] direction and becomes a function of two variables
only, denoted by W�x; x0�. If we furthermore assume a
probe which varies only along the x direction then the
wave functions in Eq. (11) depend on x and x0 respectively.
Although this probe is somewhat artificial, it will allow us
to understand the role of the nonlocality in the imaging
process. With these assumptions, Eq. (12) reduces to the
form

��R� �
2�mt

h2k0

�
Z t

0

ZZ
 �
0�R; x; z�W�x; x0� 0�R; x0; z�dxdx0dz:

(13)

Under these conditions, for a probe generated with an
‘‘aperture’’ of 25 mrad, we obtain the image shown in
Fig. 2(a), with all other parameters the same as in the
previous case. Once again when the probe is on the Si
column there is an unexpected strongK-loss signal from C.
The probe’s probability density on the C column, while
more evident than for the zone axis case, is insufficient to
account for this signal, as can be seen in Fig. 2(b). This is
reinforced by comparison of the integrated intensity at the
C column when the probe is on Si relative to that when the
probe is actually on the C column, as illustrated in
Fig. 2(c). Further evidence that the nonlocal nature of
W�x; x0� is the key factor here (and not cross talk) is given
in Fig. 2(d), where a STEM image is simulated for energy-
dispersive x-ray analysis (EDX), where x rays are detected
rather than energy-loss electrons. This is ‘‘equivalent’’ to
an EELS experiment with a detector which subtends the
whole solid angle and where electrons with energy losses
over the whole possible range are detected. It is well known
that under these conditions the effective ionization inter-
action can usually be approximated by a local potential [6],
20390
i.e., W�x; x0� � W�x���x� x0�. We see that in the EDX
case the maximum signal for the CK shell occurs when the
probe is on the C column.

Let us now investigate the role of the nonlocality
of W�x; x0� (which is purely real) more closely. The plot
of W�x; x0� for the EELS case shown in Fig. 3(a) shows
that, besides being ‘‘delocalized’’ along the diagonal, the
potential has significant contributions off the diagonal.
This should be contrasted with W�x; x0� for the EDX
case, which is shown in Fig. 3(b), where it is evident that
W�x; x0� � W�x���x� x0�. For the EELS case the potential
W�x; x0� ‘‘interacts’’ strongly off the diagonal with the
quantity <� �

0�R; x; z� 0�R; x
0; z�� in the integrand of

Eq. (12), shown in Fig. 3(c) for a depth z � 25 �A and
probe position above a Si column, as can be seen in the
plot of <� �

0�R; x; z�W�x; x0� 0�R; x0; z�� in Fig. 3(d)
(=� �

0�R; x; z�W�x; x0� 0�R; x
0; z�� integrates to zero). By

contrast, see Fig. 3(e), for EDX the potential interacts on
and near the diagonal where  �

0�R; x; z� 0�R; x0; z� �
j 0�R; x; z�j2. At a depth z � 50 �A the function
<� �

0�R; x; z� 0�R; x
0; z��, shown in Fig. 3(f), has spread

both along and off the diagonal and the nonlocal EELS
6-3



TABLE I. Summary of the depth-integrated contributions to
the cross section with the probe located above the Si and C
columns. Results are shown for both EELS and EDX, with the
contribution on the C column at 100 Å normalized to one. The
percentage of the signal derived from the diagonal is shown in
brackets for each case.

Depth (Å) EELS EDX
Si C Si C

25 0.22 (6.9) 0.27 (7.9) 0.09 (25.3) 0.38 (44.2)
50 0.49 (6.3) 0.53 (7.7) 0.21 (28.5) 0.65 (42.6)
75 0.83 (5.9) 0.77 (7.6) 0.38 (32.4) 0.82 (40.8)
100 1.18 (5.6) 1.00 (7.6) 0.57 (34.6) 1.00 (39.8)
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FIG. 3 (color online). (a) The effective nonlocal potential
W�x; x0�, used in calculating the results shown in Fig. 2(c).
(b) W�x; x0� for the image shown in Fig. 2(d).
(c) <� �

0�R; x; z� 0�R; x
0; z�� at a depth z � 25 �A for the probe

situated on the Si column. (d) <� �
0�R; x; z�W�x; x0� 0�R; x

0; z��
for the EELS case and (e) the EDX case or these conditions.
Similar results to (c), (d), and (e) are shown in (f), (g), and (h) for
a depth of z � 50 �A, and (i), ( j), and (k) for a depth of z �
100 �A. The percentages indicate the percentage contribution that
the diagonal values of the integrand make to the cross section at
the relevant depth.
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potential once again interacts strongly with the product of
wave functions off the diagonal, as can be seen in Fig. 3(g).
Although the interaction in the EDX case is evident over a
greater distance along the diagonal (increasing cross talk),
Fig. 3(h) shows that it is even more confined to the diago-
nal. These trends are maintained for a depth z � 100 �A, as
can be seen in Figs. 3(i)–3(k).

In Table. I we show the depth-integrated contribution to
the image for different depths for the probe above Si and C.
The contributions are shown relative to assuming that the
integrated contribution at 100 Å is unity when the probe is
above a C column. The numbers in brackets indicate the
20390
percentage of the cross section that is derived from the
principal diagonal (i.e., strictly local contributions). If we
look at the contributions from additional diagonal lines of
pixels, moving out from the principal diagonal, in
Figs. 3(j) and 3(k) then we find that in the EELS case we
need to move out about 1.2 Å on either side of the diagonal
before we obtain essentially all of the contributions to the
cross section. In the nearly local EDX case this is achieved
within 0.2 Å of the diagonal.

We have demonstrated that imaging based on an effec-
tive nonlocal interaction with the specimen can lead to
unexpected results. The kernel representing the inelastic
scattering allows a signal to be obtained from a site where
the probe has negligible intensity. This result has major
implications for imaging in STEM based on low-loss
EELS. The usual assumptions of locality of the imaging
process are no longer valid, meaning that there is no longer
a simple connection between a signal at a given probe
position and the location of atoms giving rise to that signal.
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