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Dynamics of Periodic Pulse Collisions in a Strongly Dissipative-Dispersive System
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We report on the dynamics of the periodic collision process occurring between different pulse bound
states in a stretched-pulse erbium-doped fiber laser. The acquisition of a large number of second-order
correlation traces allows us to reconstruct the dynamics of a single collision event. The measurements
clearly demonstrate that, unlike true solitons in the case of integrable systems, the pulses do not fully
overlap in the course of a collision. Instead, the collision proceeds through the exchange of bonds between
the individual pulses constituting the bound states.
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Since the early proposal by Hasegawa et al. [1] for the
nonlinear propagation of self-maintaining pulses in optical
fibers and its report by Mollenauer et al. [2], solitons have
become major workhorses in many subfields of modern
optics. As light beams and/or light pulses, many behaviors
of nonlinear light propagation are well described with these
ubiquitous entities [3]. For example, the generation of light
pulses in passively mode-locked solid state lasers using the
nonlinear refractive index of Kerr media (through either
self-focusing or nonlinear rotation of the polarization el-
lipse) has been successfully described in terms of sech
waveforms typical of solitons [4]. However, for some laser
systems where the pulses suffer large losses (and gain) and
encounters significant amounts of dispersion (positive and
negative) upon propagation along the laser cavity, the non-
linear Schrödinger equation fails to describe several be-
haviors. Rather, the pulse formation and interaction inside
these systems, under the strong influence of dissipative and
dispersive mechanisms, may be understood within the
formalism of a complex Ginzburg-Landau equation [5]
and described by means of other waveforms known as dis-
persion-managed solitons [6] and self-similar pulses [7].

New phenomena, yet unknown of integrable systems,
have been observed in passively mode-locked solid-state
lasers where several pulses are emitted per cavity round
trip due, in part, to the saturation of the nonlinear gain
mechanism. For example, the coherent binding of closely
spaced pulses in distinct multiplets has been reported by
several groups using various laser materials and configu-
rations [8,9]. Recently two groups have independently
reported the observation of periodic collisions occurring
between several of these bound states traveling with
slightly different group velocities [10,11]. We then sug-
gested that the different group velocities were due to the
stimulated Raman scattering that is shifting differently the
carrier frequencies of the colliding pulse states. However,
details of the collision process remain unknown because of
the finite resolution of the electronics with which the
phenomenon was observed. Thus, whether the distinct
light pulses fully overlap (i.e., pass through each other)
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or simply interact through their wings in the course of a
collision remains an open question.

In this Letter, we report time-resolved measurements
revealing the dynamics of the collisions taking place be-
tween a single-pulse and a two-pulse bound state in a
stretched-pulse erbium-doped fiber ring laser. The mea-
surements are made using an autocorrelator which makes it
possible to monitor the interacting femtosecond pulses
typically located a few picoseconds apart. The acquisition
of a significant number of autocorrelation traces over a
large number of collisions allows one to reconstruct the
history of the collision process over a time span of a few
tens of picoseconds. The observations are then compared
to an expression introduced to describe the intensity auto-
correlation of a nonstationary signal; the agreement be-
tween theory and experiment is convincing, allowing one
to elucidate the nature of the collision process. As for
solitons in integrable systems, the collisions proceed elas-
tically (in the sense that the pulse number is conserved and
that no energy is shed away by the interacting pulses).
However, unlike integrable systems, the pulses do not fully
overlap in the course of a collision; instead, the exchange
of a bond takes place between the colliding pulses. This is
due to the interaction between the trailing and leading
edges of the stretched pulses which follows from the
strongly dissipative-dispersive nature of the system.

Previously interaction forces among solitons in optical
fibers have been described [12] and accordingly observed
[13]. As well, some theoretical studies have described
collisions occurring between interacting pulses in fiber
lasers [14] and in the similar system of dispersion-managed
optical communication lines [15]. However, there appears
to be no report stating clear observational evidence of the
dynamics underlying such a process. This is to be com-
pared to the spatial domain where a wide variety of colli-
sion scenarios have already been reported [16]. The reason
is that the ultrashort time scale typical of temporal solitons
(�10�12 s) commands more intricate technical means and
a procedure for the data analysis that is not as straightfor-
ward as for the observation of spatial phenomena. In
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addition, the collision process reported herein appears to
have no analogue in the realm of spatial solitons, despite
the richness of phenomena the latter encompasses.

Passively mode-locked fiber lasers have long been
known for their inherent ability to emit several pulses per
cavity round trip [8,17]. This is due to the high gain of
doped fibers, deleterious pulse shaping mechanisms (e.g.,
higher-order dispersion) which often lead to pulse breakup
and the pulse limiting response of the mode-locking
mechanism at high power. Recently, it has been shown
that the formation and annihilation of these multiple pulses
is following a cascade of first-order phase transitions [18].
In this regime, for instance, the multiple pulses may ar-
range themselves in distinct phase-locked states of bound
pulses following each phase transition; the bound states
are, in fact, multiplets of a fundamental, single-pulse state
with quantized energy [19–21]. Even more puzzling is the
unique dynamics which characterizes the periodic colli-
sions that may occur in a particular phase which involves
two or more of these bound states, as revealed in the
present study.

The stretched-pulse fiber ring laser cavity used for the
experiment and its operation have been detailed elsewhere
[10]. The average cavity dispersion is near zero, albeit
slightly positive with D � 0:004 ps2. Typical operation
of this laser yielded about 80 fs chirp-compensated pulses
at a pulse repetition rate of 28.7 MHz in the single-pulse
regime. The energy per pulse was then about 300 pJ and the
time-bandwidth product was close to 0.6. Increasing the
pump power above a certain level resulted in the collision
process shown in Fig. 1 which involves a two-pulse bound
FIG. 1. A single pulse colliding periodically with a two-pulse
bound state: (a) the observed autocorrelation trace, (b) the
optical spectrum, and (c) the signal measured with a fast pho-
todiode as a function of the cavity round trip number (note that
one cavity round trip is about 35 ns long and that the oscillo-
scope trigger was set on the central peak which represents the
unresolved two-pulse bound state).
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state with a pulse spacing of 2.1 ps (not resolved here
because of the finite bandwidth of the photodiode) travel-
ing faster than the single pulse. The two-pulse bound state
and the single pulse keep colliding indefinitely (i.e., at least
for a day) every 1.8 s.

In order to gain insight into the collision process, we
performed second-order optical correlation measurements
since no electronics could resolve features of the collision
process over the subpicosecond scale. A rotating-arm delay
autocorrelator with a resolution better than 0.1 ps and a
quasilinear scan range of several tens of picoseconds was
used. We performed the acquisition of a very large number
of autocorrelation traces with the use of a digital oscillo-
scope. In fact, we did record 106 traces, of which about
1000 displayed features we could attribute to an ongoing
collision process. This is easily understood when one
compares the 30 ps time span that was recorded from
each autocorrelator scan while one complete cavity round
trip was about 103 times longer (� 35 ns). Bearing in mind
that there was no synchronization between the trigger of
the oscilloscope and the collision process, it was thus
expected that about one trace over a thousand would yield
information about the collision process. Then we had to
sort these traces according to the time �C elapsed between
the trigger of the oscilloscope (which was set on the central
peak of the trace) and the collision itself (i.e., the instant at
which the three pulses are equidistant). The result of this
ordering process is shown in Fig. 2. We emphasize that
Fig. 2 does not represent, as such, a real-time view of the
collision process; the underlying dynamics has to be un-
folded, as is discussed later.

The surface plot shown in Fig. 2 features about 1000
autocorrelation traces of the nonstationary laser signal in
FIG. 2. Autocorrelation traces sorted according to the time
elapsed between the oscilloscope trigger and the pulse collision.
The oscilloscope trigger was set on the central peak (that is, for a
delay � � 0).
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the course of the collision process. This is why all the
traces that are displayed are lacking the usual time-reversal
symmetry which characterizes second-order optical corre-
lation measurements taken from stationary signals. The
correlation traces in Fig. 2 are sorted in chronological
order; that is to say, the collision occurs later than the
oscilloscope trigger in the first half traces (�C < 0) while
the reverse holds for the second half (�C > 0). As well, the
collision nearly coincides with the oscilloscope trigger in
the case of the middle traces (i.e., �C � 0). The central
vertical line in Fig. 2 represents the sum of the autocorre-
lations of each pulse with itself while the parallel lines on
each of its sides results from the cross correlation between
the two pulses in the two-pulse bound state. The other lines
appearing in the surface plot follow from the cross corre-
lation of the single pulse with the two-pulse bound state.

The preceding remarks can all be summed up in the
following expression for the second-order intensity corre-
lation of the nonstationary signal with itself (details re-
garding its derivation will be published elsewhere):

���; �C� �
Z �1

�1
I�t; �� �C�I�t� �; �� �C�dt; (1)

where the explicit dependence of the pulse train distribu-
tion I�t; �� �C� upon the time delay � of the autocorrelator
has been included as a separate independent variable and
where the time �C which adds up to the time delay effec-
tively displaces the time origin of the collision process.
This explicit dependence translates the fact that the signal
distribution has at least one of its components whose
position relative to the others is delayed with respect to
�. The nonstationary component may be described accord-
ing to a delay function ���� �C�, i.e., Ins�t; �� �C� �
Ins�t� ���� �C�� whose precise form determines the po-
sition of the peaks in the correlation traces ���; �C� arising
FIG. 3. Reconstruction of the measurement illustrated in Fig. 2
assuming the elastic collision dynamics illustrated in the inset
(as seen in the reference frame moving with the central pulse).
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from the cross correlation of the nonstationary component
with the stationary ones. For instance, in Fig. 2, the near
45	 sharper lines display a spacing smaller than the central
ones while the wide-angled (nearly horizontal) more dif-
fuse lines are farther apart from one another. The latter is
due to the concurrent delay of the retarding pulse (with
respect to the two-pulse bound state) relative to the scan-
ning autocorrelator while the former is explained by a
countercurrent delay between both of them. The same
holds for the width of the peaks.

Assuming the collision dynamics between the two-pulse
bound state and the single pulse to behave as the one
illustrated in the inset of Fig. 3, one can now compute
the resulting autocorrelation traces following Eq. (1). Very
few experimental parameters are needed in order for the
theory to reproduce the measurement conditions. Indeed,
the relative speed between both pulse states of the nonsta-
tionary laser signal (i.e., � 20 ns=s) with respect to the
scanning speed of the autocorrelator (i.e., 30 ns=s) fixes
the details of the measurement portrayed in Fig. 2 [i.e.,
���� �C� � ���� �C�, with � � 2=3]. The similarity
between the measured traces (Fig. 2) and the calculated
ones (see Fig. 3) is striking. However, since our calculation
did not account for the fluctuations in the rate at which the
collision repeated (the latter being directly linked to the
pulse spacing in the two-pulse bound state [10]), the near-
horizontal lines in the surface plot illustrated in Fig. 3
appears straight and sharper by comparison with the actual
measurement (Fig. 2). Nonetheless, we conclude that the
actual pulse dynamics during a collision is following
closely the dynamics of an elastic collision as depicted in
Fig. 3. If the colliding pulses were to cross each other (see
inset of Fig. 4), the experiment discussed above would
have resulted in the traces shown in Fig. 4 instead of the
ones in Fig. 3; for instance, the lines that result from the
FIG. 4. Simulation of a measurement similar to the one illus-
trated in Fig. 2 assuming the pulses to fully overlap during the
collision as shown in the inset (to be compared with Fig. 3).
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cross correlation of the single pulse with the two-pulse
bound state would not have been broken and shifted in the
central region, in contradiction with the measurements
shown in Fig. 2.

At first sight, it might appear counterintuitive that the
envelopes of the colliding pulses do not fully overlap in the
collision process (that is, that the pulses do not cross each
other), but rather interact (attract or repel) with each other
through their tails [21]. In fact, the opposite would encoun-
ter several difficulties. First and foremost, the inherent
incapacity of the laser cavity to support pulses with twice
the energy is fundamental to the breakup in multiple
pulses. Indeed, one should think of the excessive nonlinear
effects such a pulse would undergo as deleterious mecha-
nisms which inhibit the complete overlap of the two collid-
ing pulses. In addition, the pulse width is stretched by a
factor of 10–20 twice per cavity round trip due to the
dispersion management performed in the laser cavity.
This is certainly having an effect on closely spaced pulses
since their envelopes will extend farther from each pulse in
comparison to locations where the pulse duration is
minimum.

The results reported herein are believed to have no
precedent in the literature covering the subject of nonlinear
optical wave propagation. The performed time-resolved
measurement of the collision process between ultrashort
pulses of light has revealed the unique dynamics which
characterizes dissipative-dispersive systems as the laser
described above. Soliton interactions, in the realm of inte-
grable systems, have long been known to have a great
influence on their stability. However, the latter does not
appear to hold anymore in the case of dissipative systems
as the endlessly repeating pulse collisions seem to show in
the study reported here.
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