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Explanation of the Inverse Doppler Effect Observed in Nonlinear Transmission Lines
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The theory of the inverse Doppler effect recently observed in magnetic nonlinear transmission lines is
developed. We explain the crucial role of the backward spatial harmonic in the occurrence of an inverse
Doppler effect and draw analogies of the magnetic nonlinear transmission line to the backward wave

oscillator.
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Seddon and Bearpark (SB) reported the first observation
of an inverse Doppler effect, in which the frequency of a
wave is increased upon reflection from a receding bound-
ary [1]. They used an experimental scheme based on a
magnetic nonlinear transmission line (NLTL) which was
suggested recently in [2,3]. This scheme falls into a general
class of systems that involves the emission of phase
matched high-frequency waves by an electromagnetic
shock wave propagating along a NLTL with dispersion
[4,5]. The moving boundary that is used to produce a
Doppler shift is the discontinuity that is formed between
regions of unsaturated and saturated nonlinearity in the
transmission line at the leading edge of the pump pulse
[1]. Under appropriate conditions, this shock wave (mov-
ing discontinuity) generates a phase matched rf wave
propagating in the opposite direction to the moving dis-
continuity. Following its reflection from the NLTL input
interface, this wave catches up with the moving disconti-
nuity and produces an anomalous Doppler shift [3,5].

In [1] SB adopted the theory developed in [2] where the
emission of a high-frequency Bloch wave by an electro-
magnetic shock wave phase matched with the backward
spatial harmonic was discussed and the general behavior of
this emission for a specific electrodynamic system having a
dominant backward spatial harmonic was predicted. How-
ever, SB asserted that the shock wave generates a phase
matched backward wave in the second Brillouin zone (BZ)
(or “dominating first backward spatial harmonic™ in the
terminology of [2]), while their experimental setup and the
model used for simulations did not allow them to track the
spatial structure of the generated wave and thus make clear
distinctions between a wave in the first and the second BZ.
Hence, the origin and spatial structure of the emitted and
reflected waves were not properly justified.

Later, Reed et al. criticized the theory used in [1] and the
interpretation of the measured results, and proposed an
alternative explanation of the observed effect [6]. They
applied a theoretical framework for describing the reflec-
tion of an electromagnetic wave from a moving shock like
discontinuity induced in photonic crystals [7] to explain
the anomalous Doppler shift reported in [1]. They consid-
ered waves in the second BZ in the system studied in [1] to
be unphysical, and assumed that the shock wave front
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emits the waves in the first BZ with the same frequency.
Furthermore, they connected the observed effect with a
periodic dependence of the reflection coefficient, which
would introduce an additional phase shift term at the
moving boundary and lead to the anomalous Doppler shift.

Here we present the results of an analytical study and
simulations of the spatial structure of the wave excited by
the shock wave discontinuity, and thus overcome the dis-
crepancy between SB and Reed et al. We prove that the
existence of backward spatial harmonics is crucial for the
observed inverse Doppler effect in magnetic NLTLs. We
also discuss the physical processes arising at the nonlinear
interaction of a shock wave and an rf wave which lead to
the inverse Doppler shift and justify the analogy of this
system with a backward wave oscillator (BWO).

In order to clarify the origin of the wave emitted by a
shock wave, together with the mechanism of the anoma-
lous Doppler shift after its reflection from the moving
discontinuity, we need to trace the spatial structure of the
waves propagating along the NLTL with capacitance cross-
links. The model considered in [1] [an LC circuit with
capacitance cross-links shown in Fig. 1(a)] does not allow
us to distinguish a particular spatial harmonic due to the
discrete nature of the model. The circuit model shown in
Fig. 1(b), where each LC section is replaced with the
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FIG. 1 (color online). Equivalent circuit of (a) discrete LC
circuit with capacitive cross-links and (b) distributed NLTL
with capacitive cross-links.
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length of NLTL, should be used instead. The medium
behind the shock wave front saturates and becomes linear
[4]; therefore the system shown in Fig. 1(b) is a periodi-
cally loaded distributed transmission line which supports
Bloch waves [8],

Vp(z) = V,e i = Ve ikt  y=eibor (1)

where V, is a periodic function with period d, B is the
propagation constant of the periodic structure, kg is the
propagation constant in unloaded transmission line, and

Vo = _V+(1 _ e*jk0d+jﬁd)/(1 _ ejkodJerd)‘ (2)

Bloch waves can be expanded into an infinite set of spatial
harmonics so that the field in a periodic structure can be
represented as

Vp= > V,,e b 3)

n=-—o00

Each term in this expansion is a spatial harmonic, is
periodic in spatial amplitude V,,(z + d) =V, ,(z), and
has propagation phase constant B, = B + 2nw/d. All
harmonics propagate with the same group velocity; how-
ever, some of the spatial harmonics have phase and group
velocities that are oppositely directed (backward spatial
harmonics) since 3,, can be both positive and negative. The
dispersion equation for the saturated transmission line
relating B and k is

cosBd — coskyd + 27y.kod sinkyd sin* Bd = 0. 4)

Figure 2 shows the kyd — Bd diagram for v, = C,/Cd =
1.124 (C., is the cross-link capacitance and C is the line
capacitance per unit length), which corresponds to the sys-
tem described in [1]. Coefficients in the expansion (3) (or
amplitudes of spatial harmonics) for the system shown in
Fig. 1(b) can be calculated with (2) and (4), as described in
[8]. Figure 3 shows the dependence of the ratio of the am-
plitude of the first backward spatial harmonic to the am-
plitude of the zeroth spatial harmonic on the propagation
constant B for different values of .. Each has a pro-
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FIG. 2. kyd — Bd diagram of the distributed NLTL with ca-
pacitance cross-links shown in Fig. 1(b) for y, = 1.124.

nounced maximum at some value of B8 and the ratio in-
creases with y.. In the case of the system realized in [1]
¥.=1.124 and the maximum value of the ratio |V, _|/
|V, 0l is 0.45. This means that, although the first backward
spatial harmonic is not dominant like it was assumed in
[1], it does have a relatively large amplitude and can not
be simply excluded from consideration, as was suggested
in [6].

Our transient time-domain simulations confirm that the
real physical mechanism responsible for the observed in-
verse Doppler shift is more complicated than the interpre-
tation given by SB and Reed et al. We modeled each length
of the distributed NLTL in Fig. 1(b) using n sections of LC
networks composed of series nonlinear inductances having
saturated values Ld/n (L is the inductance per unit length
for saturated nonlinearity) and parallel capacitances Cd/n
so that the capacitive cross coupling would be through 2n
sections (instead of two like in [1]). In our simulations n =
100, and they used parameters specified in [1].

Figure 4 shows the spectrum of the voltage waveform at
the 30th section of the magnetic NLTL [v,/v, = 0.285, v,
is the shock wave velocity, and v, = 1/(LC)'/2]. There are
three distinct peaks: the low-frequency one corresponds to
the Bloch wave emitted by the shock wave. The first back-
ward spatial harmonic of this wave is phase matched with
the shock wave discontinuity so that v, = w/(8 + 27/d)
(B = —0.75). After being emitted, this wave 1"’ propa-
gates in the direction opposite to the discontinuity and is
reflected from the input terminal of the NLTL as a
wave 7’1, which propagates in the same direction as the
discontinuity. Wave 1 is a simple reflection of
wave ~’17’; the frequency w and group velocity for waves
17 and 1" are equal, but their directions are reversed by
the reflection. The dispersion characteristics are designed
such that the magnitude of the group velocity for waves
”1” and 1" is greater than the velocity of the disconti-
nuity (Fig. 4), so wave 1" catches up to the discontinuity
and is reflected from it to produce a Doppler up-shifted
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FIG. 3. The dependence of the ratio of the amplitude of the
first backward spatial harmonic to the amplitude of the zeroth
spatial harmonic on the propagation constant S for different
values of parameter 7..
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FIG. 4. The spectrum of the voltage waveform at the 30th
section of the magnetic NLTL.

Bloch wave 72” (with frequency w,). Depending on the
dispersion characteristic of the system, there can be several
subsequent reflections. For the parameters here, the disper-
sion of the system is such that the direction of wave 7’2" is
opposite to the direction of shock wave propagation and its
group velocity is higher than the shock wave velocity.
Thus, wave 2" after reflection from the input interface
will catch up to the moving discontinuity again and will
reflect back with an increase of frequency, giving rise to
wave 3> (with frequency w3).

Figure 5 shows the space-domain spectrum (Fourier
transform) of the instantaneous voltage distribution along
the NLTL. Peak B in the first BZ (0 = |Bd| = 7) and
peak By, = 2m/d — B, in the second BZ (7 = |Bd| =
27) can be easily identified as absolute values of the zeroth
forward and first backward spatial harmonics of the Bloch
wave having frequency w,. (Values B, and 8, ; are the
absolute values due to the fact that a FFT does not distin-
guish between the positive and negative phase constants.
The wave emitted by a shock wave propagating in the
positive direction has a negative phase constant for the
zeroth spatial harmonic and a positive one for the first
backward spatial harmonic.) Thus, in distinction to SB
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FIG. 5. The space-domain spectrum (FTT transformation) of
the instantaneous snap of the voltage distribution along the
NLTL at t/7q = 439 [7, = 1/d(LC)'/?].

[1] and Reed er al. [6], who assumed that the shock wave
emits either a wave with B, or a wave with — 8, our
simulations show that the shock wave propagating in a
magnetic NLTL having capacitive cross-links emits a
Bloch wave with both zeroth and first backward spatial
harmonics. Higher spatial harmonics are also present, but
their amplitudes are negligible. In a similar manner, peaks
Bao and By = 2m/d — By, as well as B3 and B3| =
27/d — B30, can be identified as absolute values of the
zeroth and the first backward spatial harmonics of the
Bloch waves having frequencies w, and ws, respectively.

The excitation efficiency of the Bloch wave by the shock
wave when the latter is phase matched with the first spatial
harmonic depends on the relative amplitude of the first
spatial harmonic in the wave. If the amplitude of the first
spatial harmonic is small compared to the amplitude of the
zeroth spatial harmonic, then the Bloch wave cannot be
effectively excited. Experimental data described in [1]
correspond to the range where this ratio is at a maximum.
This explains the excitation of the Bloch wave by the shock
wave in our simulations, as well as the existence of spatial
periods falling into the second BZ. Thus, the simulations
prove that the mechanism for the emission of high-
frequency waves is essentially the same as in the BWO
(as it was suggested in [2,9]).

Physical phenomena that occur when rf electromagnetic
waves reflect from an electromagnetic shock wave front
propagating along a periodic magnetic NLTL can be under-
stood by considering the boundary condition for the elec-
tromagnetic field at the shock wave discontinuity. The
electromagnetic shock wave is a nonlinear region where
a sharp transition between two states of the medium takes
place. Here we have a moving boundary between unsatu-
rated and saturated states of the ferrite-filled magnetic
NLTL, and the boundary condition connecting parameters
of the medium before and after the transition, as described
in [10]:

{I =v,CVy={V - », @)} =0, (&)

where I, V, and ® stand for the magnitudes of current,
voltage, and magnetic flux before and after the disconti-
nuity. The interaction of a small-signal rf wave with an
intensive electromagnetic shock wave has already been
discussed in the literature [11,12]. The general condition
for shock wave stability in the presence of perturbations
requires that only the reflected wave (or waves, if disper-
sion permits) may exist; no transmitted rf waves can be
generated. In this case there are two boundary conditions
(5) and only one unknown, the amplitude of the reflected
wave. To obtain a unique, finite solution, one must note the
effect of the incident wave on the motion of the shock front
and consider the perturbation of the shock wave velocity.
From (5), the velocity of the shock discontinuity is deter-
mined by the values of current, voltage, and magnetic flux
before and after the discontinuity. The voltage and the
current drops across the discontinuity are
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Vip =V + Vg + Vpy, (6)

Vs +@+@ (7

Iy =1+ 1Ig +Ig = ,
vooC Zp Zp

where V; and I, are the unperturbed values of the shock
wave current and the voltage, while Vg, I, Zp; and Vp,,
Ig,, Zp, are, respectively, the voltage, current, and the
impedance of the incident and the reflected Bloch waves.
Assuming that the discontinuity velocity affected by the
presence of an incident and a reflected wave can be ex-
pressed as

Vg = vy t+ OV, (8)

where vy, is the unperturbed value of the shock wave
velocity in the absence of incident wave, and dv, is the
velocity perturbation due to the interaction with the inci-
dent wave. Taking into account (6) and (7), the boundary
condition can be transformed to

Iy = voCVip = 0v,CVy = Vip = vyo®1p — 6v, Py = 0.
®)
Here @, and ®, are the perturbed and unperturbed mag-
netic flux change across the shock wave discontinuity.
Thus, the relative amplitude of the reflected wave can be
estimated as
V() _ (v L +1/Cvy)/Zp —2
Vpi(z) 2= (L +1/Cv)/Zg
The frequency of the reflected wave can be obtained from
the phase continuity condition at the shock wave front

w, — By, = wy — By, +2mm/d. Q8))

(10)

Here w,, B, and w,, B, are the frequencies and propaga-
tion phase constants for the incident and reflected waves,
respectively, and m is an integer value. The last term in (11)
is connected with the spatial periodicity of the Bloch wave.
The amplitudes, frequencies, and wave numbers predicted
by (10) and (11) are in good agreement with the results of
our simulations.

Reed et al. [6] claimed that the system used to observe
inverse Doppler effect in [1] ““falls into the general class of
systems that involve a propagating shock like excitation in
a periodic system, where they predicted an inverse Doppler
effect using a different theoretical framework.” They sug-
gested using this theoretical framework to explain the
inverse Doppler effect reported in [1]. Though systems
described in [1,7,13] indeed look very similar, the physical
processes that lead to the anomalous effect are still funda-
mentally different. In the shocked photonic crystals studied
in [7], the shocklike excitation is produced externally and
the shock wave velocity is not affected by the incident
electromagnetic field. There is no nonlinear interaction
between the shock wave and the incident electromagnetic
wave, and the latter is reflected from the boundary between
media having different dielectric constants. In this case,
two incident waves produce both reflected and transmitted

waves, although the transmitted wave is evanescent. In the
theoretical framework used in [7], this is taken into account
introducing a space dependent reflection coefficient, which
is well justified. This reflection coefficient was assumed to
be a periodic function in space due to the intrinsic period-
icity of a photonic crystal. However, the formal introduc-
tion of the space dependent reflection coefficient suggested
in [6] to explain the inverse Doppler shift observed by SB
has no physical basis, since there is no transmitted wave in
the region before the electromagnetic shock wave discon-
tinuity according to the shock wave stability condition.
Thus, although the theoretical framework described in [6]
correctly describes anomalous effects at the propagation of
the shocklike mechanical excitations in periodic photonic
crystals, its conclusions cannot be directly applied to the
system suggested in [2] and realized in [1] due to funda-
mental differences between the systems.

The improved distributed model of the system studied in
[1] allowed us to prove the crucial role of the first backward
spatial harmonic which is phase matched with shock wave
discontinuity propagating along magnetic NLTL for emis-
sion of the rf wave, as well as to explain the occurrence of
the inverse Doppler effect. The results of our simulations,
together with the analysis of the physical phenomena at the
shock wave discontinuity, enable us to overcome discrep-
ancies between the previously suggested interpretations of
the observed inverse Doppler effect as given in [1,6].
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