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Chiral Symmetry Breaking and the Dirac Spectrum at Nonzero Chemical Potential
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The relation between the spectral density of the QCD Dirac operator at nonzero baryon chemical
potential and the chiral condensate is investigated. We use the analytical result for the eigenvalue density
in the microscopic regime which shows oscillations with a period that scales as 1=V and an amplitude that
diverges exponentially with the volume V � L4. We find that the discontinuity of the chiral condensate is
due to the whole oscillating region rather than to an accumulation of eigenvalues at the origin. These
results also extend beyond the microscopic regime to chemical potentials �� 1=L.
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Introduction.—One of the salient features of QCD at low
energy is the spontaneous breaking of chiral symmetry
characterized by a discontinuity of the chiral condensate.
More than two decades ago it was realized by Banks and
Casher [1] that the discontinuity of the chiral condensate at
zero quark mass is proportional to the eigenvalue density of
the QCD Dirac operator. This relation establishes that the
eigenvalue spectrum of the anti-Hermitian Dirac operator
becomes dense at the origin of the imaginary axis in the
thermodynamic limit. The Banks-Casher relation is of
substantial practical value for nonperturbative numerical
studies of QCD. It allows one to extract the chiral conden-
sate directly from the spectral density.

At nonzero baryon chemical potential, �, the Euclidean
Dirac operator, D � D��� ���0, is non-Hermitian so
that the support of its spectrum is a two-dimensional
domain in the complex plane. In this case we will show
that the discontinuity of the chiral condensate at zero mass
is not due to the accumulation of eigenvalues near zero.

The QCD partition function at zero temperature does not
depend on the baryon chemical potential,

ZNf �m;�� � ZNf �m;� � 0�; for �<�c; (1)

where�c is the smallest mass per unit quark number in the
excitation spectrum. Here and below we only consider the
case with Nf quark flavors with equal mass m. Therefore,
the chiral condensate given by

�Nf �m� �
1

NfV
@m logZNf �m;��; (2)

remains equal to its value at � � 0 for�<�c. Our aim is
to understand this behavior from the spectrum of the Dirac
operator.

We will consider two types of gauge field averages:
quenched averages where the determinant of the Dirac
operator is not included in the average and unquenched
averages which include the fermion determinant. The
quenched spectral density can be expressed as
05=94(20)=202001(4)$23.00 20200
�Q�x; y;�� �
�X
k

�2�x� iy� zk�
�
; (3)

where the eigenvalues of the Dirac operator are given by zk,
and the brackets denote the average over the Yang-Mills
action. The eigenvalue density of full QCD includes the
fermion determinant in the average

�Nf �x; y;m;�� �
h�k�

2�x� iy� zk� det
Nf �D�m�i

hdetNf �D�m�i
:

(4)

Strictly speaking, since �Nf is in general complex, this is
not a density. Because of chiral symmetry the eigen-
values occur in pairs 
zk so that �Nf �x; y;m;�� �
�Nf ��x;�y;m;��. A second reflection symmetry which
holds only after averaging over the gauge field configura-
tions is that ��

Nf
�x; y;m;�� � �Nf �x;�y;m;��. Because

the fermion determinant vanishes for zk � 
m we expect
that �Nf �x � 
m; y � 0; m;�� � 0. The chiral conden-
sate in the chiral limit can be expressed as

� � lim
m!0

lim
V!1

1

V

Z
dxdy

�Nf �x; y;m;��

x� iy�m
: (5)

At zero chemical potential the above quantity is known
to be proportional to the density of the imaginary ei-
genvalues at zero [1]. This happens because then
�Nf �x; y;m;� � 0� / ��x�. When � � 0 the eigenvalues
spread into the complex plane and this argument no longer
holds. In this case we will show that there is an extended
region of the eigenvalue density that contributes to the
chiral condensate.

For simplicity, here we will show how the condensate
arises from the microscopic limit of the spectral density
which is believed to be universal. We have also verified [2]
that a similar mechanism occurs even for larger� provided
that the contributing eigenvalues are still in the universal
region. The microscopic limit of the spectral density is
defined as [3]
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�̂ Nf �x̂; ŷ; m̂; �̂� � lim
V!1

1

��V�2
�Nf

�
x̂
�V

;
ŷ
�V

;
m̂
�V

;
�̂

F�
����
V

p

�
:

(6)

In this limit, x̂ � x�V, ŷ � y�V, m̂ � m�V, and �̂ �

�F�
����
V

p
are kept fixed with � given by (5) and F� the pion

decay constant. The expression for the condensate (5) in
this limit becomes

� � lim
m̂;�̂!1

�
Z
dx̂dŷ

�̂Nf �x̂; ŷ; m̂; �̂�

x̂� iŷ� m̂
: (7)

The microscopic limit of the spectral density at nonzero
chemical potential was recently calculated both for the
quenched case [4] and the unquenched case [5]. For a
nonzero number of flavors it was found [6] that the eigen-
value density for m�< 2�2F2

� is a strongly oscillating
complex function. The oscillations cover a region of the
complex eigenvalue plane and, as we will see below, the
entire region contributes to the integral in (7). This con-
stitutes a new mechanism where a discontinuity of the
chiral condensate in the complex mass plane is obtained
from an oscillating eigenvalue density in the complex
plane. This mechanism does not rely on the specific form
of the eigenvalue density as is demonstrated in the simple
example below.

The lack of Hermiticity properties of the Dirac operator
at nonzero chemical potential is a direct consequence of
20200
the imbalance between quarks and antiquarks imposed in
order to induce a nonzero baryon density. Because of the
phase of the fermion determinant, probabilistic methods
are no longer effective in the analysis of the partition
function. This is known as the sign problem. Although
progress has been made in some areas we believe that
because of its physical origin, a paradigm shift will be
necessary to develop viable probabilistic algorithms for
this problem. Because of this, it is our opinion that it is
particularly important to improve our analytical under-
standing of chiral symmetry breaking for QCD at nonzero
baryon density.

Euclidean QCD at finite baryon density is not the only
system without Hermiticity properties that has received
much attention recently. We mention the distribution of
the poles of S matrices which are given by the eigenvalues
of a non-Hermitian operator [7,8], the Hatano-Nelson
model [9] (a random potential together with a nonzero
imaginary vector potential), and the description of
Laplacian growth in terms of the spectrum of non-
Hermitian random matrices [10]. The essential difference
from QCD is that in these problems the determinant of the
operator only enters in the generating function of the
resolvent. We will see that the additional determinant in
QCD completely changes the character of the theory.

Example.—As an example to illustrate our point, let us
consider the eigenvalue density (sgn is the sign function)
�̂ Ex�x̂; ŷ; m̂; �̂� �
��2�̂2 � jx̂j�

4��̂2 �1� eisgn�x̂��jx̂j�2�̂2�ŷ=4�̂2��jx̂j�jm̂j��jx̂j�2�̂2�=4�̂2
�: (8)
This eigenvalue density has the same reflection symmetries
as the eigenvalue density of the QCD Dirac operator and
has the property that it vanishes at the point where the
fermion determinant is zero. The integral in (7) can be
evaluated analytically by means of a complex contour
integral in ŷ resulting in

�Ex � sgn�m̂���
�

m̂
e�jm̂j�e�jm̂j � 1�; (9)

which, for large m̂, approaches sgn�m̂��. What we have
learned from this example is that a discontinuity in the
chiral condensate can be obtained from an oscillating
spectral density rather than from eigenvalues localized on
the imaginary axis. We will show next that the same
mechanism is at work for QCD at � � 0.

The microscopic spectral density.—The input for our
calculation of the chiral condensate is the microscopic
spectral density derived for any number of flavors in [5].
Without loss of generality we will consider the case
Nf � 1 and topological charge equal to zero for which
the equations are less extensive. The microscopic eigen-
value density can be decomposed as [5,6]

�̂ Nf�1�x̂; ŷ; m̂; �̂� � �̂Q�x̂; ŷ; �̂� � �̂U�x̂; ŷ; m̂; �̂�; (10)

with (ẑ � x̂� iŷ)
�̂U�x̂; ŷ; m̂; �̂� �
jẑj2

2��̂2 e
��ẑ2�ẑ�2�=�8�̂2�K0

�
jẑj2

4�̂2

�
I0�ẑ�
I0�m̂�

�
Z 1

0
dtte�2�̂2t2I0�ẑ�t�I0�m̂t�: (11)

The first term in (10) is the quenched eigenvalue density
[4] given by �̂Q�x̂; ŷ; �̂� � �̂U�x̂; ŷ; x̂� iŷ; �̂�. As ex-
pected, the microscopic spectral density vanishes at ẑ �

m̂. A plot of the real part of the eigenvalue density for
m̂ � 60 and �̂ � 8 is shown in Fig. 1. Notice that the
oscillatory region extends from the mass pole at ẑ � m̂ and
toward the boundary of the support of the spectrum.

The oscillations appear as the microscopic variables
become large, i.e., as the thermodynamic limit is ap-
proached. In this region an asymptotic formula for the
eigenvalue density is accurate and will be used in order
to analyze the role of the oscillations for chiral symmetry
breaking. We first derive the asymptotic formula for the
eigenvalue density and then evaluate the chiral condensate
from (7). For �̂2 � 1 and �x̂� m̂�=�4�̂2�< 1, the integral
in (11) over t is very well approximated by [11]

Z 1

0
dtte�2�̂2t2I0�ẑ�t�I0�m̂t��

1

4�̂2 exp
�
ẑ�2�m̂2

8�̂2

�
I0

�
m̂ẑ�

4�̂2

�
:

(12)
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FIG. 1 (color). Top view of the real part of the eigenvalue
density for one flavor with m̂ � 60 and �̂ � 8 in half of the
complex eigenvalue plane. The oscillations are cut off to illus-
trate the eigenvalue repulsion at x̂ � ŷ � 0 and the dropoff for
x̂ > 2�̂2.
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Furthermore, we are interested in the approach to the ther-
modynamic limit where jm̂j�1, jẑj�1, jẑj2=�4�̂2��1,
and jm̂ ẑ j=�4�̂2� � 1. This justifies the replacement of the
Bessel functions by their leading order asymptotic expan-
sion including the Stokes terms. We obtain the following
asymptotic result for the difference between the quenched
and the unquenched eigenvalue density

�̂ U�x̂; ŷ; m̂; �̂�

�
1

4��̂2 e
��ŷ�isgn�x̂��jx̂j�jm̂j�4�̂2��2=�8�̂2���jx̂j�2�̂2�2=�2�̂2�:

(13)

This expression has the reflection symmetries discussed
below (4). The asymptotic expansion of the quenched part
of the spectral density is simply given by
20200
�̂ Q�x̂; ŷ; �̂� �
1

4��̂2 ��2�̂
2 � jx̂j�: (14)

For the argument presented below it is important that also
the asymptotic expansion of the spectral density vanishes
at x̂� iŷ � 
m̂.

The chiral condensate.—As explained in the introduc-
tion, the chiral condensate does not depend on the baryon
chemical potential. Hence, in the microscopic limit it is
known that for zero topological charge [12,13] (momen-
tarily we use the original variables to emphasize the vol-
ume dependence)

�Nf�1�m� � �
I1�mV��
I0�mV��

; (15)

which is discontinuous, �Nf�1�m� � sgn�m��, in the ther-
modynamic limit at fixed quark mass. The question we
wish to answer is how the oscillatory spectral density
conspires into a � independent condensate. We stress
that this is not just a challenging mathematical problem;
understanding which parts of the eigenvalue density con-
tribute to the chiral condensate will give direct insight in
the physical consequences of the sign problem.

We now derive the chiral condensate from (7) using the
asymptotic form of the microscopic eigenvalue density. We
first consider the integral over ŷ. The contribution from the
quenched part of the spectral density (14) is given by

1

4��̂2

Z 1

�1
dŷ

1

x̂� iŷ� m̂
� sgn �x̂� m̂�

1

4�̂2 : (16)

The contribution from �̂U in (7) is evaluated by a saddle
point approximation. The contour in the complex ŷ plane is
deformed into a contour from �1 to 1 over the saddle
point at ŷ � isgn�x̂��4�̂2 � jx̂j � jm̂j� and, if the contour
has crossed the pole, an integral around the pole at ŷ �
i�x̂� m̂�. The saddle point contribution is exponentially
suppressed for jx̂j< 2�̂2 leaving only the integral around
the pole. For m̂ > 0 (m̂ < 0) the pole contribution for x̂ > 0
(x̂ < 0) is exponentially suppressed. We obtain
1

4��̂2

Z 1

�1
dŷe��ŷ�isgn �x̂��jx̂j�jm̂j�4�̂2��2=8�̂2��jx̂j�2�̂2�2=2�̂2 1

x̂� iŷ�m̂
’�

1

2�̂2 ���m̂����x̂�m̂�����m̂���x̂�m̂��; (17)

where we have used that the exponent vanishes at the pole. For x̂ > 2�̂2 the eigenvalue density is zero so it is now trivial to
do the integration over x̂ to get

�Nf�1 �
�

2�̂2

Z 2�̂2

�2�̂2
dx̂

�
1

2
sgn�x̂� m̂� � ��m̂����x̂� m̂� � ���m̂���x̂� m̂�

	
� sgn�m̂��: (18)
This result agrees with (15) for jm̂j � 1 where the asymp-
totic expansion of �Nf�1�m� is valid. Using the exact
microscopic spectral density we would have recovered
the mass dependence of (15).

We also emphasize that a finite result for the chiral
condensate is not obtained due to a cancellation of the
pole and a zero of the fermion determinant. The pole term
gives a finite contribution for each of the two terms in (10)
which do not vanish at ẑ � m̂. We have checked numeri-
cally that the same mechanism results in a discontinuity of
the chiral condensate for more than one flavor.

The contribution from the unquenched part of the eigen-
value density to the chiral condensate is dominated by the
pole term because the exponential in (17) suppresses the
integrand at the saddle point in the complex ŷ plane. The
simple result (17) which implies a nonzero chiral con-
densate in the chiral limit is thus directly related to the
complex phase of the spectral density. The oscillating
1-3
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exponential has to suppress terms that diverge exponen-
tially with the volume which is achieved by oscillations in
the ŷ direction with a period that scales as the inverse of the
volume. In contrast, for quenched QCD, where the eigen-
value density is real and positive, the chiral condensate
vanishes in the chiral limit provided that � � 0 as follows
immediately from (16). Instead, a diquark condensate
forms and breaks chiral symmetry just like in phase
quenched theories (see, e.g., [14,15]). Chiral symmetry
breaking in phase quenched and full QCD occur by means
of two different mechanisms, and the oscillations of the
eigenvalue density due to the sign problem in the un-
quenched case distinguish between the two.

The resolvent.—One can easily convince oneself that for
ẑ � m̂ the exponent in the integrand of the resolvent

Ĝ Nf �ẑ; ẑ
�; m̂; �̂� � �

Z
d2û

�̂Nf �Re �û�; Im �û�; m̂; �̂�

û� ẑ
(19)

results in expressions that diverge in the thermodynamic
limit. Indeed, this was concluded from earlier random
matrix calculations of the resolvent [16]. Using the micro-
scopic spectral density (11) one finds good numerical
agreement with the results obtained in [16].

Phase transitions in generating functions.—Our results
can be understood in terms of phase transitions for gen-
erating functions for the spectral density. Using the replica
trick [6,14,17]

�Nf �x; y;m;�� � lim
n!0

1

�n
@z�@z logZNf;n�m; z; z

�;��

we are naturally led to the generating functionals

Z Nf;n�m; z; z
�;�� � hdet�D�m�Nf j det�D� z�j2ni

for the eigenvalue density. The presence of conjugate
quarks in the generating function induces a coupling to
the chemical potential in the low-energy effective theory
which is completely fixed by the pattern of chiral symme-
try breaking and determines the eigenvalue density
uniquely in the microscopic regime. In order to calculate
the microscopic spectral density this way, one has to
employ powerful integrability relations that exist for the
effective partition function [18,19].

Let us compare the phases of the generating function for
n � 1 to the regions in the complex plane characterized by
a different behavior of the eigenvalue density for Nf � 1.
For real ẑ the phase structure follows from [20]. The
extension for complex ẑ can be obtained from the asymp-
totics of the microscopic generating functions given in [6].
For jRe �ẑ�j> 2�̂2 the generating functional is in the nor-
mal state while for jRe �ẑ�j< 2�̂2 two Bose condensates
are separated by a first order phase transition. This phase
transition occurs exactly where the oscillating region of the
eigenvalue density begins, while the transition to the nor-
mal phase corresponds to the dropoff of the eigenvalue
density for jRe �ẑ�j> 2�̂2.
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Conclusions.—For QCD at nonzero chemical potential
the chiral condensate is not dominated by the contribution
from the smallest eigenvalues. On the contrary, we have
found that the contributions from strips parallel to the
imaginary eigenvalue axis do not depend on the real part
of the eigenvalue as long the eigenvalue is inside the
support of the spectrum. This result arises from integrating
a spectral density that oscillates with a period of 1=��V�
and an amplitude that diverges exponentially with the
volume. Although we have shown only results using the
microscopic eigenvalue density, we have checked [2]
that our arguments apply up to �� 1=L (for V � L4).
In conclusion, we have uncovered a novel mechanism of
chiral symmetry breaking at nonzero chemical potential
where an oscillatory spectral density results in a disconti-
nuity of the chiral condensate in the complex mass plane.
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