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Hadronic Spectrum of a Holographic Dual of QCD
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2Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309, USA

(Received 18 January 2005; published 23 May 2005)
0031-9007=
We compute the spectrum of light hadrons in a holographic dual of QCD defined on AdS5 � S5 which
has conformal behavior at short distances and confinement at large interquark separation. Specific hadrons
are identified by the correspondence of string modes with the dimension of the interpolating operator of
the hadron’s valence Fock state. Higher orbital excitations are matched quanta to quanta with fluctuations
about the AdS background. Since only one parameter, the QCD scale �QCD, is used, the agreement with
the pattern of physical states is remarkable. In particular, the ratio of delta to nucleon trajectories is
determined by the ratio of zeros of Bessel functions.
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The correspondence [1] between ten-dimensional string
theory defined on anti–de Sitter (AdS5 � S5) and Yang-
Mills theories at its conformal 3� 1 space-time boundary
[2] has led to important insights into the properties of QCD
at strong coupling. As shown by Polchinski and Strassler
[3], one can give a nonperturbative derivation of dimen-
sional counting rules [4] for the leading power-law falloff
of hard exclusive glueball scattering in gauge theories with
a mass gap dual to supergravity in warped space-times. The
resulting theories have the hard behavior expected from
QCD at short distances, rather than the soft behavior
characteristic of string theory. Another important applica-
tion is the description of deep inelastic scattering structure
functions at small x [5]. One can also derive the falloff of
hadronic light-front wave functions in QCD at large trans-
verse momentum by matching their short-distance proper-
ties to the behavior of the string solutions in the large-r
conformal region of AdS space [6]. The scale dependence
of the string modes determines the analytic behavior of the
QCD hadronic wave function, providing a precise counting
rule for each Fock component with any number of quarks
and gluons and any internal orbital angular momentum [6].
The predicted orbital dependence coincides with perturba-
tive QCD results [7].

The N � 4 super Yang-Mills (SYM) theory at largeNC
in four dimensions is dual to the low energy supergravity
approximation to type IIB string compactified on AdS5 �
S5 [1]. However, QCD is fundamentally different from
SYM theories where all of the matter fields appear in
adjoint multiplets of SU�NC�. The introduction of quarks
in the fundamental representation is dual to the introduc-
tion of an open string sector [8].

There is now substantial theoretical [9] and empirical
[10] evidence that the QCD coupling has an IR fixed point.
In many phenomenological applications, such as exclusive
processes at experimentally accessible momentum trans-
fers, the amplitudes are evaluated in the regime where the
exchanged gluon momenta are not very large and the QCD
coupling is nearly constant and not small [11]. For ex-
ample, the phenomenological successes of dimensional
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counting rules for exclusive processes can be understood
if QCD resembles a strongly coupled conformal theory at
moderate but not asymptotic momentum transfer. QCD is
also a confining gauge theory in the infrared with a mass
gap �QCD and a well-defined spectrum of color-singlet
hadronic states.

The isomorphism of the group SO�2; 4� of conformal
QCD in the limit of massless quarks and vanishing 	
function with the isometries of AdS space, x
 ! �x
, r!
r=�, maps scale transformations into the holographic co-
ordinate r: the string mode in r is the extension of the
hadron wave function into the fifth dimension. Different
values of r correspond to different energy scales at which
the hadron is examined, and determines the scale of the
invariant separation between quarks x
x
 ! �2x
x


. In
particular, the r! 1 boundary corresponds to theQ! 1,
zero separation limit. Conversely, color confinement im-
plies that there is a maximum separation of quarks and a
minimum value of r. Thus, AdS space should end at a finite
value r0 � �QCDR2 truncating the regime where the string
modes can propagate. The cutoff at r0 breaks conformal
invariance and allows the introduction of the QCD scale.

A ten-dimensional nonconformal metric dual to a con-
fining gauge theory is written as [3]

ds2 �
R2

z2
e2A�z���
�dx
dx� � dz2� � ds2X; (1)

where A�z� ! 0 as z � R2=r! 0, and R is the AdS radius.
The metric (1) behaves asymptotically as a product of AdS
space and a compact manifold X. Color confinement will
be described in a simplified model based on a ‘‘hard-wall’’
approximation where the metric factor e2A�z� is a step
function. This provides an analog of the MIT bag model
where quarks are permanently confined inside a finite
region of space [12]. As in the bag model, the linearized
equations in the bulk have no interactions. However, unlike
bag models, the truncated boundary conditions on string
modes are imposed on the holographic coordinate, not on
the bag wave function at fixed time. The truncated anti–de
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FIG. 1 (color online). Light meson orbital states for �QCD �
0:263 GeV. Results for the vector mesons are shown in (a) and
for the pseudoscalar mesons in (b). The dashed line corresponds
to the usual linear Regge trajectory and has slope 1:16 GeV2.
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Sitter/conformal field theory (CFT) thus provides a mani-
festly Lorentz invariant model with confinement at large
distances and conformal behavior at short distances.

The AdS/CFT correspondence can be interpreted in the
present context as a classical duality between the valence
state of a hadron in the asymptotic 3� 1 boundary and the
lightest mass string mode in AdS5 � S5 [6,13]. Higher
Fock components are manifestations of the quantum fluc-
tuations of QCD; metric fluctuations of the bulk geometry
about the fixed AdS background should correspond to
quantum fluctuations of Fock states above the valence
state. In fact, as shown by Gubser, Klebanov, and
Polyakov for large Lorentz spin, orbital excitations in the
boundary correspond to string degrees of freedom propa-
gating in the bulk from quantum fluctuations in the AdS
sector [14]. We identify the higher spin hadrons with the
fluctuations around the spin 0, 12 , 1, and 3

2 string solutions
on AdS5. This identification avoids the huge string dimen-
sions associated with spin >2, which grow as �	

�gsNC�1=4 at large NC. The interpolating operators O,
hPjOj0i � 0, which couple to the color-singlet hadrons
at the boundary, can be constructed from gauge-invariant
products of local quark and gluon fields taken at the same
point in four-dimensional space-time. We introduce quarks
in the fundamental representation at the AdS boundary and
follow their wave functions as they propagate into the bulk.

As a first application of our procedure, consider the twist
(dimension minus spin) two glueball interpolating opera-
tors O4�L � FDf‘1 . . .D‘mgF, written in terms of the sym-
metrized product of covariant derivatives D. The operator
O4�L has total internal space-time orbital momentum, L �Pm
i�1 ‘i, and conformal dimension � � 4� L. We shall

match the large r asymptotic behavior of each string mode
in the bulk to the corresponding conformal dimension of
the boundary operators of each hadronic state while main-
taining conformal invariance [13]. In the conformal limit,
an L quantum, which is identified with a quantum fluctua-
tion about the AdS geometry, corresponds to an effective
five-dimensional mass 
 in the bulk side. The allowed
values of 
 are uniquely determined by requiring that
asymptotically the dimensions become spaced by integers,
according to the spectral relation �
R�2 � ���� 4�. For
large space-time angular momentum L, we recover the
string theory results for the spectrum of oscillatory exited
states 
’L=R. The physical string modes are plane waves
along the Poincaré coordinates with four-momentum P

and hadronic invariant mass states given by P
P
 � M2.
The four-dimensional mass spectrum ML follows from the
boundary condition ��x; z0� � 0 on the solutions of the
AdS wave equation with effective mass 
:

�z2@2z � �d� 1�z@z � z2M2 � �
R�2�f�z� � 0; (2)

where ��x; z� � e�iP�xf�z�. The normalizable modes are

�";k�x; z� � C";ke�iP�xz2J"�z	";k�QCD�; (3)

with C";k a normalization constant, " � 2� L, and � �
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4� L for d � 4. For small z, � scales as z��, where the
scaling dimension � of the string mode has the same
dimension of the interpolating operator which creates a
hadron. The four-dimensional mass spectrum is then de-
termined by the zeros of Bessel functions 	";k:

M ";k � 	";k�QCD: (4)

A similar expression for the glueball spectrum follows
from considering a AdS slice with boundary conditions
at some finite value of z [15].

We next consider the twist-two, dimension 3� L,
vector-meson operators O


3�L �  '
Df‘1 . . .D‘mg , dual
to string modes �
 � e�iP�xf
�z� propagating on AdS
space with polarization along the Poincaré coordinates.
The string wave functions of the vector mesons are then
determined by the five-dimensional wave equation

�z2@2z � �d� 1�z@z� z2M2� �
R�2� d� 1�f
�z� � 0;

(5)

in the �z � 0 gauge [16], with normalizable modes

�

";k�x; z� � C";ke

�iP�xz2J"�z	";k�QCD�(

; (6)

where " � 1� L and � � 3� L. The hadronic mass
spectrum follows from �
�x; z0� � 0. Similarly, the pseu-
doscalar mesons are described by the operator O3�L �

 '5Df‘1 . . .D‘mg , dual to string modes polarized along
the radial coordinate in the �
 � 0 gauge. The predicted
spectrum is compared in Fig. 1 with the masses of light
mesons listed by the Particle Data Group [17]. We plot the
values of M2 as function of L for �QCD � 0:263 GeV.
The predicted masses for the lightest hadrons are too high,
but otherwise the results are in good agreement with the
empirical values. A string mode with a node in the coor-
dinate r should correspond to a radial resonance with a
node in the interquark separation. The first radial AdS
eigenvalue has a mass 1.8 GeV which is high compared
to the masses of the observed radial excited mesons, the
)�1300� or the *�1450�. These defects could possibly be
cured by modifying the sharp cutoff at r0.
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The study of the baryon spectrum is crucial for our
understanding of bound states of strongly interacting
relativistic confined particles. Consider the twist-three,
dimension 9

2� L, baryon operators O�9=2��L �

 Df‘1 . . .D‘q D‘q�1 . . .D‘mg , dual to spin- 12 or 32 modes
in the bulk. In this case, we need to solve the full ten-
dimensional Dirac wave equation, 6D�̂ � 0, since the low-
est Kaluza-Klein (KK) mode of the Dirac operator on an N
sphere is not zero. Consequently, baryons are charged
20160
under the SU�4�R 	 SO�6� R symmetry of S5. In contrast,
the SU�4�R charge of mesons is zero. We have classified
the baryonic states according to the SU�2�F � SU�2�spin �
SU�4� isospin-spin symmetry corresponding to two mass-
less quarks.

The field �̂ can be expanded in terms of eigenfunctions
�,�y� of the Dirac operator on the compact space X,
i 6DX�k�y� � �,�,�y�, with eigenvalues �, as �̂�x; z; y� �P
,�,�x; z��,�y�, where the y are coordinates of X. The

AdS Dirac equation is [16]
�
z2@2z � dz@z � z2M2 � ��, �
�2R2 �

d
2

�
d
2
� 1

�
� ��, �
�R�̂

�
f�z� � 0; (7)
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FIG. 2 (color online). Light baryon orbital spectrum for
�QCD � 0:22 GeV. Predictions for the nucleons are shown in
(a) and for the � trajectories in (b). The lower dashed curves
correspond to baryon states dual to spin- 12 modes in the bulk and
the upper continuous curve to states dual to spin- 32 modes.
where��x; z� � e�iP�xf�z� and �̂u� � �u�. For AdS5, �̂
is the four-dimensional chirality operator '5. The AdS
mass 
 is determined asymptotically by the orbital exci-
tations in the boundary: 
 � L=R. The eigenvalues on
Sd�1 are �,R � ��,� d

2�
1
2�, , � 0; 1; 2; . . . [18]. The

normalizable modes for , � 0 are

�";k�x; z� � C";ke�iP�xz5=2�J"�z	";k�QCD�u��P�

� J"�1�z	";k�QCD�u��P��; (8)

where u� �
'
P

P u�, " � 2� L, and � � 9

2� L. The
solution of the spin- 32 Rarita-Schwinger equation in AdS
space is more involved, but considerable simplification
occurs in the �z � 0 gauge for polarization along
Minkowski coordinates, �
, where it becomes similar to
the spin- 12 solution [19]. The four-dimensional spectrum
follows from ���x; z0� � 0 or ��


�z; z0� � 0

M�
";k � 	";k�QCD; M�

";k � 	"�1;k�QCD; (9)

with a scale independent mass ratio. Two of the fermions
can be assigned to the fundamental representation of
SU�NC�; however, to have a color-singlet state of three
fields at large NC, the third must be in the NC�NC � 1�=2
antisymmetric representation [20]. For NC � 3 we recover
the usual interpolating operator which creates a physical
baryon in QCD�3� 1�: O9=2 � (abc a b c. The internal
spin S of a given hadron matches the spin of its dual string.
The boundary conditions are ���x; z0� � 0 for baryons
with internal spin S � 1

2 and ��

�x; z0� � 0 for S � 3

2 .
Figure 2(a) shows the predicted orbital spectrum of the
nucleon states and Fig. 2(b) the � orbital resonances. The
only parameter is the value of �QCD which we take as
0.22 GeV. The baryon states with internal spin S � 1

2 lie on
a curve below the states with S � 3

2 . The spectrum shows a
clustering of states with the same orbital L, consistent with
a strongly suppressed spin-orbit force. Nucleon and� reso-
nances with same total quark spin S fall on the same tra-
jectory. With the exception of the lowest states, the agree-
ment of the predicted spectrum with data is remarkable.
However, the first AdS radial state has a mass 1.85 GeV, so
it is difficult to identify it with the Roper N12

��1440�.
Equation (9) predicts a novel parity degeneracy between
states in the parallel trajectories shown in Fig. 2, as seen by
displacing the upper curve by one unit of L to the right.
Thus, the L � 1 states N�1650�, N�1675�, and N�1700� are
degenerate with the L � 2,N�1680� andN�1720�, likewise
the L � 3 states N�2190� and N�2250� with the L � 4,
N�2220�. The deltas provide another excellent example of
parity degeneracy: the L � 2 states ��1905�, ��1910�,
��1920�, ��1950� are within the error bars degenerate
1-3
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with the L � 3 state ��1930�. It has been suggested that
parity doublets with the same total angular momentum,
such as the �52

��1905�–�52
��1930� doublet, are due to

chiral symmetry restoration in the upper part of the light
baryon spectrum [21], which is consistent with the larger
symmetry implied by (9). In the quark-diquark model of
Jaffe and Wilczek [22], baryon states on the lower trajec-
tory of Fig. 2(a), correspond to ‘‘good’’ diquarks, the upper
to ‘‘bad’’ diquarks, and all the states shown in Fig. 2(b) to
bad diquarks, with exception of the ��1930� which does
not follow the simple 3q quark-diquark pattern.

The general agreement of the holographic model with
the known light baryon spectrum is quite remarkable and
nontrivial. The only mass scale in the holographic model is
�QCD. The best fit to the meson spectra is �QCD �

263 MeV; the best fit to the baryon spectrum is �QCD �

220 MeV. The small difference could be due to the differ-
ent sensitivity of the mesons and baryons to the space
truncations at z0 � 1=�QCD. Moreover, the ratio of the
delta to nucleon trajectories is parameter independent,
depending simply on the ratios of zeros of Bessel func-
tions. Hadrons are identified by requiring that the state in
the bulk has the correct matching conformal dimension at
z! 0, x2 ! 0. Our baryon analysis is thus based on color-
singlet states which extrapolate to three fermion fields at
zero separation. The contributions of higher particle Fock
states of a hadron wave function are suppressed by extra
powers of z at z! 0, so only the valence state is important
in the short-distance domain.

The holographic model is relevant to the color-singlet
hadronic spectrum of any gauge theory which has confor-
mal scaling at short distances and confinement at large
distances. The degeneracy of the hadronic states depends
on the flavor symmetry that is assumed, i.e., the number of
massless quarks. There is no explicit dependence on NC,
and the QCD spectrum follows by matching dimensions to
SU�3�C color-singlet hadronic states at the z! 0 bound-
ary. For example, the ten-dimensional lowest Dirac AdS
modes have dimension 9=2, precisely the conformal di-
mension of a SU�3�C 3-quark baryon state.

The SYM particles are expected to acquire a mass of the
order of the supersymmetric (SUSY) breaking scale and
decouple from the theory. Consequently, the only (non-
supersymmetric) hadronic states which can be derived
from the classical holographic theory are effectively the
(dimension-3) JP � 0�; 1� pseudoscalar and vector me-
sons, the (dimension- 92 ) JP � 1

2
�; 32

� baryons, and the
(dimension-4) JP � 0� glueball states—corresponding
exactly to the lowest-mass physical hadronic states. Our
prediction for the mass of the lowest glueball state  �� is
M’1:3GeV for �QCD � 0:26 GeV. Hadrons with non-
zero orbital angular momentum and higher Fock states
require the introduction of quantum fluctuations. The
model provides an explanation of why hadrons consist of
two gluons, three quarks, or a quark and antiquark, and not
other exotic combinations.
20160
In some sense the holographic model is a covariant
generalization of the MIT/SLAC bag models; however,
unlike the bag models, it also incorporates the near-
conformal behavior of QCD at short distances. The ap-
proach is highly successful in organizing the hadron spec-
trum, although it underestimates the spin-orbit separations
of the L � 1 orbital states. The model might be improved
for the low-lying states by modifying the boundary con-
ditions at r � r0. Our results suggest that basic features of
the QCD hadron spectrum can be understood in terms of a
higher dimensional dual theory.
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[13] G. F. de Téramond and S. J. Brodsky, hep-th/0409074.
[14] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Nucl.

Phys. B636, 99 (2002).
[15] H. Boschi-Filho and N. R. F. Braga, Eur. Phys. J. C 32, 529

(2004); J. High Energy Phys. 05 (2003) 009.
[16] W. Muck and K. S. Viswanathan, Phys. Rev. D 58, 106006

(1998).
[17] S. Eidelman et al. (Particle Data Group Collaboration),

Phys. Lett. B 592, 1 (2004).
[18] R. Camporesi and A. Higuchi, gr-qc/9505009.
[19] A. Volovich, J. High Energy Phys. 09 (1998) 022.
[20] S. Dimopoulos, S. Raby, and L. Susskind, Nucl. Phys.

B173, 208 (1980).
[21] L. Y. Glozman, Phys. Lett. B 475, 329 (2000).
[22] F. Wilczek, hep-ph/0409168.


