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Quantum Multimode Model of Elastic Scattering from Bose-Einstein Condensates
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Mean field approximation treats only coherent aspects of the evolution of a Bose-Einstein condensate.
However, in many experiments some atoms scatter out of the condensate. We study a semianalytic model
of two counterpropagating atomic Gaussian wave packets incorporating the dynamics of incoherent
scattering processes. Within the model we can treat processes of the elastic collision of atoms into the
initially empty modes, and observe how, with growing occupation, the bosonic enhancement is slowly
kicking in. A condition for the bosonic enhancement effect is found in terms of relevant parameters.
Scattered atoms form a squeezed state. Not only are we able to calculate the dynamics of mode
occupation, but also the full statistics of scattered atoms.
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A remarkably universal tool describing a vast majority
of experiments with the Bose-Einstein condensates is the
celebrated Gross-Pitaevskii equation (GPE). It describes a
coherent evolution of the atomic mean field. In the Hartree
interpretation, its time-dependent version assumes that
each atom of the system undergoes identical evolution.
This is a good assumption since in typical experiments
the wave packet of the system contains many thousands of
particles in the same state. To use a term borrowed from
quantum optics, the time-dependent GPE describes stimu-
lated processes. In some experiments [1], however, there is
clear evidence of spontaneous processes. For example, in a
collision between two condensates, some atoms from col-
liding quantum matter droplets would inevitably scatter
away from them. This is a loss process, which is not
accounted for by the conventional GPE. A description of
such phenomena calls for the use of quantum fields instead
of c-number wave functions. This is not easy since, in
general, field equations are nonlinear. Instead of quantum
fields, several groups used classical stochastic fields to
imitate quantum initiation of spontaneous processes [2].
At this point it is hard to assess the accuracy of these
methods. Solid results so far have been obtained only
within perturbation theory [3–5]. It is the purpose of this
Letter to present the first exact nonperturbative calculation
of collisional losses, valid in the regime of Bose enhance-
ment. Our model assumes spherical nonspreading
Gaussians for the colliding wave packets. No doubt it
will serve as a benchmark test of the validity of various
approximate schemes including classical stochastic fields.

A system of bosons interacting via contact potential is
described by the Hamiltonian
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where �̂�r; t� is a field operator satisfying equal time
bosonic commutation relations, m is the atomic mass,
and g determines the strength of the interatomic interac-
tions. Since the Hamiltonian (1) is of the fourth order in �̂,
the Heisenberg equation governing the evolution of the
field will be nonlinear and thus, in general, analytically
and numerically untractable. However, for some physical
systems, a Bogoliubov approximation can be applied lead-
ing to linear Heisenberg equations. The idea underlying
this approximation states that for some cases the field
operator might be split into two parts  and �̂. The first
contribution describes a macroscopically occupied field
and, since its fluctuations are usually small, its operator
character might be dropped ( becomes a c-number wave
function satisfying the GPE). The second part �̂, represent-
ing the fluctuations, requires a full quantum mechanical
treatment, but as long as we neglect its backreaction on  
the evolution of �̂ will be linear.

In this Letter we consider a process of collision of two
strongly occupied Bose-Einstein condensates. The initial
state of the system consists of two counterpropagating
atomic wave packets and the ‘‘sea’’ of unoccupied modes.
For such a system the Bogoliubov approximation can be
applied. The splitting of the bosonic field is performed in
the following manner:
�̂�r; t� �  Q�r; t� �  �Q�r; t� � �̂�r; t�; (2)
where the subscript 	Q denotes the mean momentum of
the colliding condensates and  Q�r; t� �  �Q�r; t� satisfies
the time-dependent GPE. Upon inserting Eq. (2) into the
Hamiltonian (1), one obtains a collection of different
terms. We keep only those that lead to the creation or
annihilation of a pair of particles,
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One can argue that such an approximation gives correct
results if and only if the kinetic energy associated with the
center-of-mass motion is much larger than the interaction
energy per particle, �h2Q2=�2m� 
 gn, where n is the
average density of the particles in the condensates.
Numerical proof of the above statement in the simplest
case of two plane matter waves was given in [3]. Since in
the case considered below the average momentum of the
wave packet �hQ is much larger than the width of the wave
packet in the momentum space, the above argument ap-
plies. This condition is readily fulfilled in current experi-
ments [1,6,7].

In order to further simplify the dynamics we compare
three characteristic time scales of the problem. Assuming
� and N=2 are the width and the number of atoms in each
wave packet, we define collision time, tC � �m��=� �hQ�,
linear dispersion time, tLD � m�2= �h [8], characteristic
time of the spread of the wave packet due to the kinetic
energy term (neglecting the nonlinearity), and nonlinear

dispersion time, tND �
����������������������������
�3=2m�5=gN

q
, the time of ballis-

tic expansion in the Thomas-Fermi approximation [9]. The
dynamics of our system depend on the relations between
these time scales. Hence we introduce dimensionless pa-
rameters: tLD=tC � � and �tLD=tND�

2 � �. When the num-
ber of elastically scattered atoms is small in comparison
with the total number of atoms in both wave packets, and
both linear and nonlinear dispersion time scales are much
longer than the collision time [�tLD=tC� � �
 1 and
�tND=tC�2 � �2=�
 1], we can neglect the change of
shape of the macroscopically occupied functions  Q�r; t�
during the collision. In our model we use spherically
symmetric Gaussian wave functions,
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where r � �x1; x2; x3�. In the dimensionless units (t � t=tC
and xi � xi=�, for i � 1, 2, 3), the Heisenberg evolution
equation of the field operator �̂ � �̂ exp�i�t=2� can be
obtained upon substituting (4) into (3),

i�@t�̂�r; t� � �1
2��� �2��̂�r; t� � �e�r

2�t2 �̂y�r; t�: (5)

The above equation has spherical symmetry. Hence, we
decompose �̂ into the basis of spherical harmonics

�̂�r; t� �
X
n;l;m

Rn;l�r�Ylm��;��ân;l;m�t�; (6)
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where ân;l;m are annihilation operators for a particle in the
mode described by n, l, m quantum numbers. A good
candidate for Rn;l�r� is a set of eigenfunctions of a spheri-
cally symmetric harmonic oscillator,
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��������������������������
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; (7)

where Ll�1=2
n �x� is the associated Laguerre polynomial [10]

and a0, a harmonic oscillator length, is an auxiliary free
parameter that can be chosen to minimize the computa-
tional effort. The evolution of ân;l;m�t� is described by
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Here F�a; b; c; x� is a hypergeometric function [10]. Notice
that all coupling coefficients are calculated analytically
and the ân;l;m operators for different l andm are decoupled.
Moreover, Eq. (8) do not depend on quantum number m.
With all these simplifications the linear system of Eq. (8)
can be solved numerically.

The solution of the set of dynamical Eq. (8) for ân;l;m
contains the full information about the considered quantum
system. In particular, we can reconstruct the operator
�̂�r; t�, using decomposition defined in Eq. (6). Since the
Hamiltonian (3) is quadratic in �̂ and the initial state is a
vacuum state, than, in the Schrödinger picture, at any later
time t the state of scattered atoms is a multimode squeezed
state [11].

The most straightforward observable quantity, the num-
ber of elastically scattered atoms as a function of time can
be expressed in terms of the trace of the density matrix

S �t� �
Z
d3rh�̂y�r; t��̂�r; t�i

�
X1
n�0

X1
l�0

�2l� 1�hâyn;l;m�t�ân;l;m�t�i; (10)

where �2l� 1� accounts for the degeneracy of Eq. (8) with
regards to the quantum number m [12]. In the limit where
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FIG. 1. Number of scattered atoms versus time in perturbative
regime. Dashed line: analytical result given by (11). Solid line:
numerical result obtained from our model [using Eq. (10)] for
� � 20 and � � 60 [16]. The inset shows the time evolution of
the largest eigenvalue of the density matrix.

0 1 2
t/t

C

0.0

1.0×10
4

2.0×10
4

N
um

be
r 

of
 s

ca
tte

re
d 

at
om

s

0 1 2
t/t

C

0

20

40

60

T
he

 la
rg

es
t e

ig
en

va
lu

e

FIG. 2. Number of scattered atoms versus time in nonpertur-
bative regime where the bosonic enhancement occurs. Dashed
line: analytical result given by (11). Solid line: numerical result
obtained from (10). Parameters are � � 160, � � 40 [16]. The
inset shows the time evolution of the biggest eigenvalue of the
density matrix.
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FIG. 3. The biggest eigenvalue of the density matrix for differ-
ent l for � � 160 and � � 40, at time t � 2tC. The density
matrix has several eigenvalues of the same order.
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�=� is small [notice that in Eq. (8), this coefficient multi-
plies the source term], S�t� can be evaluated in the first
order perturbation approximation giving [3]

S �t� �
��2

16
erf�

���
2

p
t�: (11)

The same result is obtained using imaginary scattering
length method [4]. The quality of this approximation is
illustrated in Fig. 1.

The bonus of having solved the full set of operator
equations is that calculating the full density matrix of the
system of scattered atoms �&�r; r0; t� � h�̂y�r; t��̂�r0; t�i� or
even higher order correlation functions is just as easy as
finding S�t�. In the basis (6), due to the decoupling prop-
erty, density matrix can be written as a direct product of
&n;n0;l;m � hâyn;l;m�t�ân0;l;m�t�i matrices, for different l and
m. In the inset of Fig. 1 we present the time evolution of the
largest of the eigenvalues of the density matrix &�r; r0; t�.
Because of the normalization of the density matrix,
�i'i�t� � S�t�, where 'i are the eigenvalues of the density
matrix, the inset of Fig. 1 shows that for � � 20, � � 60
there is much less than one particle even in the mostly
populated eigenmode.

Figure 2 shows analogous comparison between pertur-
bative solution (11) and formula (10) in the regime of
parameters where the perturbation theory is expected to
fail (the criterion for bosonic enhancement is �=�> 1,
where �=� is proportional to interaction strength g, den-
sity of the condensates N=�3, and collision time tC �
m�= �hQ [13]). The figure shows that, until some critical
time, approximately equal to 0:2tC, both the perturbative
and full solutions agree very well. At this critical time the
formula (10) exceeds the perturbative solution and the
difference between curves rapidly grows in time. At the
same time the biggest eigenvalue of the density matrix of
20040
the system reaches one, which means that there is one
particle in the mostly populated eigenmode. This observa-
tion gives explanation to the growing discrepancy between
two curves shown in Fig. 2. Once approximately one atom
is scattered into one of the eigenmodes of the density
matrix, the probability of scattering another atom into
this mode grows rapidly. This is due to bosonic statistics
of the scattered atoms and is called the bosonic enhance-
ment effect.

Interesting information about the system might be ob-
tained upon analyzing the largest eigenvalues of &n;n0;l;m for
each quantum number l. Figure 3 juxtaposes these eigen-
values as a function of l, for the case with bosonic enhance-
ment. The plot shows that the density matrix has several
eigenvalues of the same order.

From the experimental point of view, coherence proper-
ties of the scattered atoms are of great importance. These
1-3
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FIG. 4. First and second order correlation functions in momen-
tum space g1�k;k0� and g2�k;k0� for jkj � jk0j � Q, as a
function of relative azimuthal angle � at t � 2tC for � � 160,
and � � 40.
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properties are best characterized by the correlation func-
tions. In particular, the first and the second order correla-
tion functions can be measured in experiment. In one of the
most commonly used methods, time-of-flight measure-
ment, the momentum distribution of the system is ob-
tained. Thus here we calculate the first and the second
order correlation functions in momentum space using

g1�k;k0; t� �
h�̂y�k; t��̂�k0; t�i���������������������������������������������������������������������

h�̂y�k; t��̂�k; t�ih�̂y�k0; t��̂�k0; t�i
q (12)

for the former, and

g2�k;k0; t� �
h�̂y�k; t��̂y�k0; t��̂�k0; t��̂�k; t�i

h�̂y�k; t��̂�k; t�ih�̂y�k0; t��̂�k0; t�i
(13)

for the latter. Because of spherical symmetry of the
Heisenberg equation for �̂, the momentum density
h�̂y�k; t��̂�k; t�i is spherically symmetric as well.

According to Wick theorem and since the anomalous
density for k � k0 is zero �h�y�k; t��y�k; t�i � 0�, the nth
order correlation satisfies a relation gn�k; k� � n!. It is
confirmed by numerical results. The solid line in Fig. 4
shows the first order correlation function (12) plotted for
fixed length of the k and k0 vectors (jkj � jk0j � Q) as a
function of relative angle �. As expected, for � � 0 the
condition, g1�k;k� � 1 is satisfied. Also, the limited co-
herence angle, due to spontaneous initiation of the scatter-
ing process, is clearly visible. The dashed line in Fig. 4
shows the second order correlation function (13). Once
again, a prediction g2�k;k� � 2 is met. As Fig. 4 shows,
the g2 function reveals a strong correlation between atoms
scattered in the directions k and �k, which corresponds to
the relative angle � � 180�. This is an intuitive result,
since atoms get scattered in pairs in such a way that the
momentum and energy conservation laws are satisfied.
Finally, the width of the correlation peak of g2 in the
forward direction in the perturbative regime scales as
20040
1=�, which is proportional to the size of colliding wave
packets [13]. This is in analogy to the Hanbury Brown and
Twiss method of estimating sizes of distant stars by mea-
suring the intensity-intensity correlation function [14] or
relating the density-density correlation of � mesons to the
size of the fireball in high energy collision of hadrons [15].

In conclusion, upon analyzing the quantum model of
two counterpropagating atomic Gaussian wave packets we
get a deeper insight into processes of elastic collision
losses of atoms and are able to study the transition from
the spontaneous regime to the bosonic enhancement.
Scattered atoms form a squeezed state that can be viewed
as a multicomponent condensate. Within this model in
principle all order correlation functions are accessible
and hence it has a high predictive power.
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