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We show that the dynamics of transmission control protocol (TCP) may often be chaotic via a
quasiperiodic route consisting of more than two independent frequencies, by employing a commonly
used ns-2 network simulator. To capture the essence of the additive increase and multiplicative decrease
mechanism of TCP congestion control, and to qualitatively describe why and when chaos may occur in
TCP dynamics, we develop a 1D discrete map. The relevance of these chaotic transport dynamics to real
Internet connections is discussed.
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The Internet is one of the most complicated systems that
man has ever made. In recent years, two types of fascinat-
ing multiscale behaviors have been found in the Internet.
One is the temporal-domain fractal and multifractal prop-
erties of aggregated network traffic flows [1,2]. The other is
the spatial-domain scale-free topology of the Internet (see
[3] and references therein). Also, it has been observed that
the failure of a single router may trigger routing instability,
which may be severe enough to instigate a route flap storm
[4]. Furthermore, packets may be delivered out of order or
even get dropped, and packet reordering is not a pathologi-
cal network behavior [5]. All these point out the rich and
complex dynamics of various facets of the Internet. As the
next generation Internet applications such as remote in-
strument control and computational steering are being
developed, another facet of complex behavior is beginning
to surface in the form of transport dynamics. In order to
sustain the needed control channels over wide-area con-
nections, it has become increasingly important to under-
stand the dynamics of the widely deployed transport pro-
tocol, the transmission control protocol (TCP). Typically,
the transport dynamics over the Internet connections are a
result of TCP’s nonlinear additive increase multiplicative
decrease (AIMD) congestion-control mechanism interact-
ing with the stochastic Internet traffic. This complex inter-
action leads one to naturally expect the transport dynamics
to be highly complicated.

For more than a decade, it has been conceived that the
dynamics of complicated communication networks could
be chaotic [6]. More recently there have been several re-
search efforts [7–13] to better understand this issue, and
yet several fundamental questions remain. In particular, the
observation of chaos in [9], based on the widely used ns-2
network simulator [14], could not be repeated, which leads
to the suspicion that these observed motions may, indeed,
be periodic albeit with very long periods [15]. Our main
objective is to systematically carry out the simulations in
order to critically examine whether TCP dynamics are
chaotic and, if yes, to identify a route to chaos. We present
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Internet measurements as well to complement the simula-
tion results.

TCP provides a reliable data transmission mechanism
over Internet connections by utilizing (explicit or implicit)
acknowledgments and loss inferences of data segments
sent to the destination. It relies on two mechanisms to set
its transmission rate: flow control and congestion control.
The flow control ensures that the sender does not overflow
the receiver buffer. The congestion control ensures that the
sender does not unfairly overrun the available connection
bandwidth. We assume that the flow window is appropri-
ately chosen and the main dynamics are due to its con-
gestion control. TCP maintains the congestion-control
window size w, and sends data at a rate w=T, where T is
the round trip time (RTT) of the connection. It works as
follows: w packets are sent consequently, and then no more
packets are sent, until acknowledgments arrive or loss is
inferred, then w is updated. For simplicity, we consider the
Tahoe version of TCP that adjusts w based on an acknowl-
edgment of a data segment or inferred loss due to a time-
out; our overall conclusions, however, hold for more recent
AIMD TCP versions (such as new Reno). Ignoring the
transient slow-start phase, TCP dynamics alternate be-
tween two phases, R1 consisting of only acknowledgments
and R2 consisting of only inferred losses. The rule for
updating w is as follows [16]: w w� 1=w when an
acknowledgment is received in R1; w w=2 when loss
is inferred in R2. More concretely, by assuming the flow
control window to be fixed, we have the following
w-update map: �1; Wmax� ! �1; Wmax� [10]:

M�wi� � wi�1 �

8>>><
>>>:

wi � 1=wi if wi 2 R1; wi�1 2 R1;
wi=2

ni if wi 2 R1; wi�1 2 R2;
wi=2ni if wi 2 R2; wi�1 2 R2;
wi � 1=wi if wi 2 R2; wi�1 2 R1:

(1)

In region R1, there is no packet loss, ni � 0, and the TCP is
in additive increase (AI) phase. In R2, there are ni > 0
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FIG. 1. (a)–(f) A quasiperiodic route to chaos, with C �
0:1 Mbps, delay d � 10 ms, B � 10 packets, where a packet
is of size 1000 bytes. (a) For N � 3, a quasiperiodic congestion
window size W�i� time series sampled by an equal time interval
of 10 ms. (b) The power spectral density (PSD) of (a). (c) The
T�i� time series corresponding to (a). (d) The PSD of (c). When
N � 17, the T�i� becomes irregular (e), with a white-noise-like
PSD (f). (g),(h) show a quasiperiodic T�i� time series and its
PSD, when C � 0:5 Mbps, d � 10 ms, B � 10, and N � 3.
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packet losses, where ni may be a complicated function of
time, and the TCP is in multiplicative decrease (MD)
phase. Note that when there are many competing TCP
flows, each flow is described by Eq. (1).

We now examine TCP dynamics by systematically car-
rying out ns-2 simulations. In order to examine the tem-
poral evolution of a dynamical system, one often measures
a scalar time series at a fixed point in the state space. The
Takens embedding theorem [17] ensures that the collective
dynamic behavior of the dynamical variables coupled to
the measured ones can be conveniently studied by the
measured scalar time series. To illustrate the qualitative
aspects of TCP dynamics by measuring only a scalar time
series, it is most effective to consider a single bottleneck
link, which tightly couples all flows through it. For sim-
plicity, we shall follow the setup of Veres and Boda [9]
consisting of long-lived TCP flows on a single link. This
setup has four parameters: the link speed C in Mbps, the
link propagation delay d in ms, the buffer size B in units of
packets of 1000 bytes, and the number of competing TCP
flows N. We have found that N acts as a critical bifurcation
parameter in the route to chaos via quasiperiodic motions,
as explained below.

For each of the N competing TCP flows, we record the
time series W�i� corresponding to its congestion window
size w. An example of quasiperiodic W�i� is shown in
Fig. 1(a), with C� 0:1 Mbps, d� 10 ms, B� 10, N � 3.
Its power spectral density (PSD) is shown in Fig. 1(b). We
observe many discrete sharp peaks when 105 points are
used, but until then PSD has a flat spectrum. Thus, one
might be tempted to interpret W�i� to be chaotic on smaller
data sets. Therefore, the W�i� time series is not ideally
suited for the study of (quasi)periodic motions with long
periods. This motivates us to define a new time series, T�i�,
which is the time interval between the onset of two suc-
cessive MD (also called exponential back-off) regions as
indicates in Fig. 1(a). The start of an exponential back-off
indicates triggering of a loss episode. Thus T�i� is closely
related to RTT since it is equivalent to the time interval
between two successive loss bursts. The T�i� correspond-
ing to W�i� of Fig. 1(a) is shown in Fig. 1(c), together with
its PSD in Fig. 1(d). We observe that this T�i� is periodic,
and, hence, W�i� is quasiperiodic. When N is increased to
17, the T�i� becomes very irregular, as shown in Fig. 1(e).
While its broad spectrum of Fig. 1(f) suggests that T�i� is
chaotic, this is indeed so, as will be explained soon.

Before we proceed, we note that it is possible that T�i�
could be quasiperiodic. An example is shown in Fig. 1(g),
with C � 0:5 Mbps, d � 10 ms, B � 10 packets, N � 3,
together with its PSD in Fig. 1(h). We have further ex-
tracted two new time series, T�k��i�, which is the interval
time series between the successive local maxima of the
T�k
1��i� time series, for k � 1, 2, and T�0��i� � T�i�. We
have found that the T�2��i� is simply periodic, and hence
W�i� is quasiperiodic with four independent frequencies.
We also note that the ‘‘chaotic’’ congestion window size
19870
data studied in [9] are, in fact, quasiperiodic with two in-
dependent frequencies. Furthermore, the probability distri-
butions for the constant, periodic, and quasiperiodic T�i�
are composed of only a few discrete peaks. This suggests
that the observed quasiperiodic T�i� constitutes a discrete
torus.

Let us now determine whether the irregular time series
of Fig. 1(e) is chaotic or not. Note that T�i� often can be of
the order 104 to 105, which further establishes that a shorter
W�i� time series is even more ill suited for the study of the
underlying irregular dynamics. To study the chaotic nature
of irregular T�i� time series, we employ the direct dynami-
cal test for deterministic chaos developed in [18]. This is
one of the more stringent tests for chaos, and has found
applications in the study of the effects of noise on dynami-
cal systems [19] and experimental time series [20]. To
employ this method, we first construct vectors of the
form Vi � �T�i�; T�i� L�; . . . ; T�i� �m
 1�L��, where
m is the embedding dimension and L the delay time.
2-2
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Since T�i� are interval time series, below we have simply
chosen m � 6, L � 1 (very similar results are obtained
when m � 8, 10, etc.). We then compute the ��k� curves
defined by

��k� �
�
ln
�
k Vi�k 
 Vj�k k

k Vi 
 Vj k

��
: (2)

The computation is carried out for a sequence of shells,
ri �k Vi 
 Vj k� ri � �ri, where ri and �ri are pre-
scribed small distances (�ri is not necessarily a constant).
The angle brackets denote the ensemble average of all
possible �Vi; Vj� pairs, and k is called the evolution time.
For true low-dimensional chaotic systems, the ��k� curves
for different shells form a common envelope, and the slope
of the envelope accurately estimates the largest positive
Lyapunov exponent. For random systems, the ��k� curves
corresponding to different shells do not form a common
envelope, and hence the system under study cannot be
interpreted as chaos [19]. The ��k� curves for T�i� of
Fig. 1(e) are shown in Fig. 2(a), where the four curves,
from bottom to top, correspond to shells of sizes
�2
�i�1�=2; 2
i=2�, i � 14, 15, 16, 17. We observe a very
well defined linear common envelope at the lower left
corner of Fig. 2(a). The existence of a common envelope
guarantees that a robust positive Lyapunov exponent can be
obtained no matter which shell is used in the computation.
Hence, the T�i� time series of Fig. 1(e) is, indeed, chaotic.

We have noted that the probability distributions for the
T�i� time series of regular motions are composed of a few
discrete peaks. What are the distributions for the chaotic
T�i� time series such as shown in Fig. 1(e)? They are
power-law-like, namely, P�T 
 t� � t
�, for almost 2 or-
ders of magnitude in t, as shown in Fig. 2(b). The exponent
� is not a universal quantity, however.

To qualitatively explain TCP dynamics let us first mod-
ify Eq. (1) to a form that is amenable to analysis. This can
be achieved by noticing that when TCP is in the AI phase,
the window size must not exceed the maximally allowable
window size. When this condition is not met, then TCP
switches to the MD phase. These verbal descriptions can be
expressed by the following map [21]:
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FIG. 2. (a) The ��k� curves and (b) the complementary cumu-
lative distribution functions (CCDFs) for data of Fig. 1(e).
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M�wi� � wi�1 �

	
wi � 1=wi if �N

i�1wi � Wmax;
wi=2ni if �N

i�1wi >Wmax:
(3)

In Eq. (3), if Wmax is interpreted as the maximal allowable
window size it can account for the effect of nonconstant
flow window. Therefore, the modified map is more general
than the map of Eq. (1).

When there are a large number N of competing TCP
flows, it is often more convenient to lump the effect of the
N 
 1 other TCP flows as background traffic. In such a
scenario, if we focus on w1, then �N

i�1wi � Wmax may be
rewritten as w1 � W0max � Wmax 
 �N

i�2wi. Therefore,
W0max is determined by the background traffic, and typically
is a complicated function of time, since the bottleneck
bandwidth can vary with time considerably due to the
dynamic background traffic. We have carried out the simu-
lation of Eq. (3) by assuming W0max to be periodic and
quasiperiodic, and have, indeed, observed chaos.

We are now ready to understand why chaos cannot occur
when the number of competing TCP flows is small, such as
2. Let us assume that wi and wi ��wi as well as wi�1 and
wi�1 ��wi�1 are smaller than W0max. It is then easy to see
that j�wi�1j � j�wij, that is, small disturbance decays.
This means during the AI phase of TCP, nearby trajectories
contract instead of diverge. Hence, the dynamics are stable.
In order for the dynamics to be unstable so that the
Lyapunov exponent is positive, two conditions have to be
met: (i) the transition from the AI phase to the MD phase
has to be very frequent, and (ii) the time spent in the MD
phase has to be significant. To satisfy these conditions, the
number of competing TCP streams has to be necessarily
large, and thus the network scenarios considered in [9] are
not conductive to chaotic dynamics.

How relevant is the present study to the dynamics of the
real Internet? Is the irregularity of T�i� shown in Fig. 1(e)
an artifact of the Tahoe version of TCP we used, or more
generally an artifact of the ns-2 simulator? To find an
answer, we collected W�i� measurements between Oak
Ridge National Laboratory (ORNL) and Louisiana State
University (LSU) at millisecond resolution using the net
100 instruments using new Reno TCP. We computed T�i�
as shown in Fig. 3(a), whose profile is qualitatively quite
similar to Fig. 1(e). In fact, it also follows a (truncated)
power law, as shown in Fig. 3(b). The exponent for the
power law part is even smaller than the time series of
Fig. 1(e). The truncation in the power law could be due
to the shortness of the T�i� time series. As we have pointed
out, the T�i� time series is related to RTT. Cottrell and
Bullot [22] have been experimenting with many advanced
versions of TCP, and also observed RTT time series very
similar to these. We also have observed from RTT and loss
data measured on geographically dispersed paths on the
Internet (with a resolution of 1 s) by researchers at the San
Diego Supercomputer Center that the probability distribu-
tions for the time interval between successive loss bursts
typically follow a power-law-like distribution, with the
exponent � also smaller than 1. Thus, we have good reason
2-3
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FIG. 3. (a) A T�i� time series extracted from a W�i� time series
collected using net 100 instruments over the ORNL-LSU con-
nection. (b) The CCDF for the T�i� time series.
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to believe that the observed irregular T�i� time series is not
an artifact of the ns-2 simulator, but reflects reality to some
degree. In fact, the complicated dynamics described here is
much simpler than the actual dynamics of the Internet,
considering that there are all kinds of randomness in the
Internet; in particular, typical TCP flows are not long lived,
but vary considerably in durations determined by specific
applications. Indeed, a detailed analysis of Internet mea-
surements in [13] reveals that W�i� dynamics contain a
dominant chaotic part but there is also an additional sto-
chastic component due to the competing traffic.

There are a number of important implications of this
study. (i) Conventionally, congestion control focuses
mainly on steady state analysis and convergence to a steady
state. Now that TCP dynamics can often be chaotic, one
should also focus on the ‘‘transient’’ nonconvergent dy-
namics. (ii) Its dynamics being often chaotic, TCP is not
the best choice for Internet control applications, for which
transport dynamics have to be kept stable. One solution
may be to guide the unstable dynamics back to a stable one,
and here chaos control may be an effective strategy. (iii) To
fundamentally eliminate unstable transport dynamics, new
transport protocols (perhaps non-AIMD approaches such
as stochastic approximation methods of [23]) have to be
developed and their stability has to be carefully studied
using chaos theory.
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