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Apex Exponents for Polymer-Probe Interactions
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We consider self-avoiding polymers attached to the tip of an impenetrable probe. The scaling exponents
�1 and �2, characterizing the number of configurations for the attachment of the polymer by one end, or at
its midpoint, vary continuously with the tip’s angle. These apex exponents are calculated analytically by �
expansion, and numerically by simulations in three dimensions. We find that when the polymer can move
through the attachment point, it typically slides to one end; the apex exponents quantify the entropic
barrier to threading the eye of the probe.
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FIG. 1. Configurations of a polymer near an obstacle:
(a) attached to the apex of a planar sector of angle �;
(b) threaded through the eye of a cone with apex semiangle �.
There has been remarkable progress in recent years in
nanoprobing and single-molecule techniques. These devel-
opments have had a direct impact on biopolymer research
producing a wealth of beautiful results on DNA dynamics
[1], molecular motors [2], and protein-RNA folding [3,4].
Today it is possible to measure statistical properties of a
single macromolecule rather than deducing them from
experiments with solutions of many polymers. This natu-
rally leads to questions regarding the theoretical limitations
of these techniques, such as the effects of microscopic
probes on the measured properties of the polymer.
Consider, for instance, a polymer attached to the apex of
a cone-shaped probe (e.g., a micropipette or the tip of an
atomic force microscope [5,6]). What is the configurational
entropy for this system? Suppose that this probe is a
microscopic needle with a hole at the end. How hard is it
to thread a polymer through the needle’s eye?

Quite generally, the number of configurations N of a
polymer of length N or, equivalently, of an N-step self-
avoiding walk (SAW), behaves as [7]

N � const� zNN��1: (1)

The ‘‘effective coordination number’’ z, depends on micro-
scopic details, while the exponent � is ‘‘universal.’’
Actually, � does depend on geometric constraints which
influence the polymer at all length scales. In particular,
there are a number of results demonstrating the variations
of � for polymers confined by wedges in two and three
dimensions [8–12]: A SAW anchored at the origin and
confined to a solid wedge (in 3D) or a planar wedge (in
2D) has an angle-dependent exponent � that diverges as
the wedge angle vanishes. A limiting case which has been
extensively studied, both analytically [13,14] and numeri-
cally [11,12], is a SAW anchored to an impenetrable sur-
face, for which � � �s � 0:70� 0:02 [12].

To model the polymer-probe system, we consider a
SAW attached to the apex (tip) of an impenetrable obstacle
(needle). To avoid introduction of an external length scale,
we focus on obstacles of scale-invariant shape, such as a
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planar slice (sector) of angle � [Fig. 1(a)], or a conical
needle of apex semiangle � [Fig. 1(b)]. While both ge-
ometries are natural extensions of the 2D wedge, they are
clearly different in three dimensions (and also distinct from
the 3D wedge, which consists of two planes intersecting at
a line). The former excludes the polymer from the volume
of a cone, while the latter prevents it from crossing the
surface of a slice. Nonetheless, the resulting phenomenol-
ogy is rather similar. Indeed, one of the technical innova-
tions of this Letter is the demonstration that many such
geometries can be treated in the same manner by an � �
4� d expansion focusing on the interaction with a 2D
surface. The � expansion, as well as numerical simulations
in 3D, shows that the exponent � � �1 varies continuously
with the apex opening angles in Fig. 1. Continuously
varying exponents are rather uncommon in critical phe-
nomena. In the present case they arise from the interaction
of two self-similar entities, the polymer and the probe.

Another variant of this problem occurs when a polymer
is attached to the apex at its midpoint. This case is de-
scribed by Eq. (1) with exponent � � �2. More generally,
let us denote by N2�N;N1�, the number of accessible
configurations for a polymer attached to the apex at an
arbitrary monomer, dividing it in two segments of lengths
N1 and N2 � N � N1. If we allow the two segments to
3-1  2005 The American Physical Society
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FIG. 2. Diagrams contributing to renormalization of g to sec-
ond order (a),(b),(c); to Z in first order (d),(e) at the apex of a
slice; and to Z2 in first order (f) at the eye of a conic needle.

PRL 94, 198303 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
20 MAY 2005
exchange monomers with each other (which can be done
by replacing a rigid attachment with a slip ring as depicted
in Fig. 1(b)], then the equilibrium configurations will be
distributed with a weight proportional to N2�N;N1�. A
natural interpolation formula as a function of � (or �),
supported by the � expansion at first order, is

N 2�N;N1� / Nc���	N1�N � N1�

c1���: (2)

To get a feeling for this scaling relation, let us look at some
limits: When the probe is absent, we recover Eq. (1) and
c�0� � �0 � 1, where �0 ’ 1:158 describes the geometri-
cally unconstrained SAW. If the obstacle is present but the
two segments do not interact with each other, then c � 0
and c1 � �1 � 1. By fitting to the limits of N1 ! 0 and
N1  N2, we find c1 � �2 � �1 and c � 2�1 � �2 � 1.
Below, we estimate the exponents in Eq. (2) both analyti-
cally and numerically. For now, assuming Eq. (2) holds, we
see that if c1 < 0, the maximum number of configurations
is realized when either N1 or N2 equals N. This brings us to
one of our main findings: No matter how small the apex
angle, we find c1 < 0, i.e., the most likely states have N1 ’
N or N2 ’ N, with an entropy barrier separating the two.
Threading a needle is hard.

To treat the problem analytically, we start with the
Edwards [15] model of a self-avoiding polymer, and add
an interaction with the obstacle. In this formulation, con-
figurations of the polymer are described by r��� 2 <d,
where � measures the position along the chain, and are
weighted according to the energy [16]

H �
1

2

Z N

0
_r2d��

v0

2

Z N

0
d�

Z N

0
d�0�	r��� � r��0�


� g0
Z
M

d2R
Z N

0
d��	r��� �R
: (3)

The self-avoiding interaction is replaced by a ‘‘soft’’ re-
pulsion of strength v0. In the same spirit, the impenetrable
obstacle is replaced with a soft repulsion of magnitude g0.
The key observation is that in 3D the polymer can only
sense the exterior of an impenetrable obstacle, and will not
care if its interior is hollow. In generalizing to d dimen-
sions, we keep the dimensions of the now softened exterior
manifold (indicated by R 2 M) as two. The advantage of
this choice is that both g0 and v0 have the same bare
dimensions, and in a perturbative scheme simultaneously
become relevant in d � 4. We then analyze the model
using a renormalization group (RG) scheme [13,14] which
is a modification of the conformation space RG [17,18].
The scaling exponents are calculated using dimensional
regularization in d � 4� � dimensions to order O���.

It is customary to define nondimensionalized (bare)
coupling constants ~v0 � v0L�, ~g0 � g0L� at a length scale
L. We also define the renormalized coupling constants v �
Z�1
v ~v0 and g � Z�1

g ~g0, where the renormalization con-
stants Zv and Zg are calculated perturbatively as series in
v and g. Diagrams contributing to the renormalization of g
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are shown in Figs. 2(a)–2(c), and involve both interactions
of the polymer with the obstacle and with itself. The
leading singularities in the renormalization constants
come from short distances and therefore the leading cor-
rection to g does not depend on the overall shape of the
obstacle. This is true as long as it is possible to draw a finite
circle around points away from the apex [see Fig. 2(b)],
and is also why the interaction with the obstacle becomes
irrelevant in the degenerate limits of � � � � 0. The self-
interaction is uninfluenced by the obstacle, and the renor-
malization constant Zv is the same as in the unattached
polymer [18]. To first order in �, the nontrivial fixed point
of the RG flow is found to be �v�; g�� � ��2�=2; 3��=4�.
The fixed point thus depends only on the dimension of the
constraining manifold, but not on its shape [19,20].
However, the number of accessible configurations does
depend on the exact geometry as described below.

Consider first-order corrections to the partition function
Z coming from the self-interaction [Fig. 2(d)] and the
interaction with the slice [Fig. 2(e)]. Combining them
and adding relevant counterterms to eliminate poles in �,
we obtain

Z � 1�
1

4�2 �v
� � �g�� ln

�
2�N

L2

�
�O��2�: (4)

Comparing this with N�1����1 � 1� ��1��� � 1��
lnN � � � � , and substituting the fixed point values
�v�; g��, we find

�1��� � 1�
�
8

�
1�

3�
2�

�
�O��2�: (5)

The above treatment is easily generalized to a polymer
attached by its midpoint. For the number of configurations,
we observe that the contribution from the interaction with
the obstacle is doubled. Interaction between the two halves
of the polymer, however, makes no separate correction and
is already included. (Note that if we ignore the obstacle and
consider self-interactions only, we get a ‘‘degenerate’’ star
polymer with two branches that is equivalent to a linear
3-2
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FIG. 3 (color online). The probability distributions p�N1� for
two noninteracting segments of lengths N1 and N � N1 attached
to the apex of a planar slice for different values of angle �. The
curves are the result of 109 MC steps for N � 2000.
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polymer.) Thus, for the calculation of �2 at order of �, we
can add the separate contributions from self-avoidance and
avoidance of the obstacle; cross terms can only occur at
higher orders. This enables us to identify the scaling ex-
ponent

�2��� � 1�
�
8

�
1�

3�
�

�
�O��2�: (6)

Repeating this argument for the slip-ring geometry, we find

N 2 / N�=8	N1�N � N1�

�3��=�16��; (7)

which confirms the ansatz in Eq. (2) to first order in �.
It is straightforward to extend the above formalism to

obstacles of different shapes, such as the conical manifold
with apex angle � [Fig. 1(b)]. In counting the number of
configurations we obtain a result similar to Eq. (4), with �
replaced by 2� sin�. Since the fixed point location is the
same as before, this substitution in Eqs. (5) and (7) gives

�cone
1 ��� � 1�

�
8
�1� 3 sin�� �O��2�; (8)

N cone
2 ��� / N�=8	N1�N � N1�


��3=8�� sin�: (9)

The difference between the two geometries is thus merely
quantitative.

Our approach provides a simple way of calculating
critical exponents for geometries intractable by other meth-
ods that explicitly exclude entire d-dimensional regions
[8,9]. However, it does break down in certain limits. For
instance, in the case of a cone, the polymer is free to
occupy either side of the hollow cone— the partition sum
is dominated by the arrangement with the largest number
of configurations. Thus the result for �1��� is valid only for
� � �=2. The restriction for �2��� is even more severe.
For values of � larger than some critical angle �c < �=2,
the self-avoidance will cause the two halves of the polymer
to be on the opposite sides of the conical surface thereby
invalidating the calculation. Certain limitations exist for
the planar sector geometry as well. For example, in 3D we
must have �2�2�� � 2�s � 1. This equality does not hold
in the � expansion. The reason is that in 3D, a complete
plane prevents two polymers on its opposite sides from
interacting with each other, whereas in 4D it does not. In
short, the method described above, despite its appealing
simplicity, is not omnipotent and must be used with some
caution.

The earlier discussion of ‘‘threading a needle’’ illus-
trates the essence of the method of ‘‘entropic competition’’
[21,22] which we employ to numerically estimate the
exponents �i��� in 3D. We sample the ensemble of differ-
ent configurations of two polymer segments which can
exchange monomers and thus ‘‘compete entropically.’’ To
calculate �1���, we prevent the two segments from inter-
acting with each other. The number of configurations is
then
19830
N 1 / 	N1�N � N1�

�1����1; (10)

so that the resulting histogram for N1 allows us to calculate
the exponent �1���. Possible Monte Carlo (MC) moves
include attempts to remove one monomer from the free end
of a randomly chosen polymer segment and adding it to the
free end of the other segment; both segments also undergo
random configuration changes via pivoting [23]. Figure 3
illustrates the dramatic effect of the angle � on p�N1�, the
probability distribution function (PDF) for the segment
length N1. For small �, the distribution is peaked at the
center while for � bigger than a critical value �c, the
maximum of the PDF moves to the sides. The numerical
data from entropic competition suggest �c � 5�=8, which
is not too far from the first order � expansion result of �c �
2�=3 in Eq. (5).

For the purpose of calculating �2���, we include inter-
actions between the segments. Open symbols in Fig. 4
show variations of the exponents �1;2��� fitting histograms
from entropic competition, such as in Fig. 3, to power laws
as in Eqs. (10) and (2).

It is instructive to compare the results of entropic com-
petition with those of a more established procedure, such
as dimerization [24,25]. The latter is a quite efficient
method [23], in which an N-step SAW is created by gen-
erating two �N=2�-step SAWs and attempting to concate-
nate them. We generated SAWs for N � 16, 32, . . . , 2048,
and by attempting to attach them to the end point of an
appropriate sector, measured a success probability pN . Let
us indicate the number of SAWs not attached to the sector
by A0zNN�0�1, and those attached to the sector either
(1) by their ends, or (2) by their midpoint as
Aiz

NN�i����1 (i � 1, 2 corresponds to the notation intro-
duced earlier). Then, the ratio between the number of
configurations, pN � �Ai=A0�N

�i�����0 , represents the
3-3
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FIG. 4 (color online). Extrapolated values of the exponents
��1 � �0 � �1 (circles) and ��2 � �0 � �2 (diamonds) as a
function of sector angle � from entropic competition (open
symbols), and dimerization (full symbols). Error bars represent
statistical uncertainties of individual estimates of the exponents,
as well as the uncertainty in the extrapolation N ! 1.
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probability to attach an N-step polymer to a sector with
angle �. Fitting a power law to this ratio thus provides a
means of estimating the exponent difference ��i � �0 �
�i. Using the dimerization method we generated M � 106

SAWs. We were able to obtain reasonable estimates of the
exponent for all values of �, as shown in Fig. 4 (full
symbols).

The two numerical approaches are in very good agree-
ment; error bars for entropic competition results being even
smaller. For � � 0, our results deviate from zero beyond
the statistical error range. We believe this deviation to be a
finite size effect, due to discreteness of the lattice. As a
check, we estimated ��1;2 when the obstacle consists of
the positive x axis. While asymptotically such a situation
corresponds to � � 0, and should lead to ��i � 0, we
obtained ��1 � 0:02 and ��2 � 0:05. For � � 2�, we
expect to have ��1 � �0 � �s � 0:46 and ��2 � �0 �
2�s � 1 � 0:76; our results are quite close to these
estimates.

In summary, we consider configurations of a polymer
attached to the apex of a self-similar probe (at least on the
scale of the polymer size). The geometric constraints im-
posed by the impenetrable probe lead to exponents � which
vary continuously with the apex angle. Two such expo-
nents are associated with attachment of the polymer by one
end or by a midpoint. Together, they determine if a mobile
attachment point is likely to be in the middle or slide to one
side. These apex exponents are obtained analytically by an
� � 4� d expansion, and through independent numerical
schemes in d � 3. The � expansion takes advantage of the
19830
marginality of interactions of a polymer with a two dimen-
sional manifold in four dimensions, and can be applied to a
variety of shapes. The numerical method of entropic com-
petition is shown to be a powerful tool in this context,
comparable to or better than the more standard dimeriza-
tion approach. The numerical and analytical results agree
up to 10%–15%, and indicate the presence of an entropic
barrier that favors attachment of the polymer to the apex at
its end. It would be interesting to see if these predictions
can be probed by single-molecule experiments.
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