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Non-Markovian Transport of DNA in Microfluidic Post Arrays
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We present an analytically solvable model for the transport of long DNA through microfluidic arrays of
posts. The motion is a repetitive three-part cycle: (i) collision with the post and extension of the arms;
(ii) rope-over-pulley post disengagement; and (iii) a random period of uniform translation before the next
collision. This cycle, inspired by geometration, is a nonseparable (Scher-Lax) continuous-time random
walk on a lattice defined by the posts. Upon adopting a simple model for the transition probability density
on the lattice, we analytically compute the mean DNA velocity and dispersivity in the long-time limit
without any adjustable parameters. The results compare favorably with the limited amount of experi-
mental data on separations in self-assembled arrays of magnetic beads. The Scher-Lax formalism provides
a template for incorporating more sophisticated microscale models.
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FIG. 1. Schematic of a post collision superimposed on a self-
assembled array of magnetic beads [2]: (a) The DNA collides
with the post and begins step (i). (b) The coil unravels and
extends into two arms. (c) When the two arms are extended, the
DNA begins step (ii). r is the fraction of monomers in one arm.
(d) The DNA disengages by a rope-over-pulley mechanism.
(e) Step (iii) begins when the DNA disengages from the post,
extended close to its full contour length lc, and ends with the
next collision. The DNA cannot collide with any of the posts
between its leading and trailing ends. The schematic highlights
the incomplete extension observed in experiments [4,6].
Microfluidic post arrays are a powerful alternative to gel
electrophoresis for separating long DNA. For example,
arrays of self-assembled magnetic bead columns [1,2]
(the Ephesia system) or microfabricated pillars [3] can
separate DNA tens of kilobase pairs (kbp) long in minutes
[1,2] or even seconds [3]. At the same time, the uniformity
of these arrays and the availability of fluorescence micros-
copy techniques makes these systems ideal for fundamen-
tal studies of DNA dynamics in obstacle courses [4]. It is
no surprise, then, that many researchers have turned their
attention towards post collisions of long DNA. For single
posts, there exists a growing body of experimental work
[5–7], complimented by theoretical analyses and numeri-
cal simulations [8–10]. There are also analogous experi-
mental [4] and numerical [11] studies on DNA dynamics in
arrays. While these studies have produced a wealth of
information, it is not always clear how to utilize this
information to guide device design.

To address this need, we previously proposed [12] an
analytically solvable Markovian model for averaging
single-post data. When the DNA moves through a row in
the post array, we assumed that it collides with the post
with some probability �c and, if it collides, it is retained
for an average time �. Otherwise, the DNA moves between
post rows with its unhindered velocity U � �0E, with �0

the free-solution mobility and E the electric field strength.
If �c is independent of the field and �� E�1, then this
model predicts [12] that the band broadening scales like
E�1 and the resolution is independent of the field, in
agreement with experiments [2]. Nevertheless, the model
cannot make quantitative predictions without functional
forms for � and �c.

In order to determine � and �c, and simultaneously test
the validity of the Markovian model, Minc et al. undertook
a single-molecule study [4] of T4 DNA (168.9 kbp) in self-
assembled magnetic arrays of various post densities. They
confirmed the aforementioned dependencies of � and �c
on E, but found that the Markovian model is invalid for
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high density arrays used in separations [2,3]. This implies
that an analytical model for guiding real device design
must account for the close proximity of the posts and the
resultant memory between collisions.

In this Letter, we develop such a non-Markovian model
for DNA motion in post arrays, inspired by geometration
theory [13,14]. Although we focus our comparison with
experimental results on the Ephesia system, the model is
valid for any of the post arrays used in practice [1–3,5,6].
We treat the DNA dynamics as a repetitive cycle consisting
of the three steps shown in Fig. 1: (i) collision with the post
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TABLE I. Comparison of the model and experimental results
[4] on single T4 DNA molecules for the distance between
collisions. Experimental values are presented in brackets next
to the theoretical prediction.

Post diameter Post spacing Rows to collision
Data set d (�m) a (�m) hni

1 1.7 13.0 11:9 (12:6� 2:1)
2 1.3 6.3 14:9 (14:1� 4:2)
3 1.0 3.4 23:4 (14:0� 1:8)
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and extension into two arms; (ii) a rope-over-pulley disen-
gagement; and then (iii) a random period of translation
before colliding with the next post. The model differs from
geometration [14] in the third step. Geometration assumes
the next collision always occurs a distance lc downstream,
where lc is the contour length of the DNA. This is reason-
able in gels, where the ‘‘posts’’ are extremely dense, but
not in microfluidic arrays [2]. Randomizing the third step is
nontrivial, since it couples the random duration of a cycle
to the random distance traversed, making the continuous-
time random walk (CTRW) nonseparable [15].

To analyze this walk, we need to derive the transition
probability density,  �n; t�, for moving through n post rows
in time t during a cycle. For steps (i) and (ii), we adopt the
preaveraged model of Popelka et al. [14], which permits a
closed form for  �n; t�. The preaveraging refers to step (i),
where the DNA collides with the post and uncoils into two
arms in the time t1 � lc=U. In the second step, the differ-
ence in the electrical force on each arm drives the disen-
gagement from the post, requiring the time

t2 �
lc
2U

ln
�

1

j2r� 1j

�
; (1)

where r 2 �0; 1	 is the initial fraction of DNA in one of the
arms. We model r as a uniformly distributed random
variable [14,16], noting that the logarithmic divergence
of t2 at r � 1=2 is integrable [8]. Once the DNA disen-
gages from the post, we assume it travels n rows in the time
t3 � na=U before it collides again. The total time for a
cycle of distance na is then t1 
 t2 
 t3.

We also need to specify the probability that the DNA
collides in the nth row. The simplest model [2] assumes
that the probability of colliding in a given row is equal to
the density of posts, � � d=a, where d is the post diameter
and a is the center-to-center post spacing. As we can see in
Fig. 1, we also need to account for the fact that the fully
extended molecule cannot collide with any of the n� �
lc=a post rows between its leading and trailing ends. Thus,
the probability of colliding in row n < n� is zero, and the
probability of colliding in row n � n� is ��1� ��n�n

�
.

Geometration [14] corresponds to � � 1.
Although the key parameters in the model (�, a, n�, and

U) appear unambiguous thus far, in practice there is some
uncertainty in their definitions. The post density and spac-
ing are well-defined for microfabricated arrays [3,5,6], but
not for quasiregular arrays like Fig. 1. For the latter, we use
the average post diameter and center-to-center spacing,
which does not account for array disorder.

Disorder also lends uncertainty to n�, as the exact num-
ber of ‘‘excluded posts’’ varies from collision to collision.
Relaxation of the DNA introduces further uncertainty into
n�. As indicated in Fig. 1(e), the leading end of the DNA
tends to relax before the molecule disengages from the post
[6], so the true value of n� may be less than lc=a. Indeed,
even the precise value of lc for stained DNA is debatable
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[17]. However, the DNA must relax partially before the
next collision, so these errors may cancel out.

Perhaps the greatest source of ambiguity is universally
using U � �0E as the velocity of each step. During the
collision (t1 and t2), the polymer has a limited number of
conformations, so it is unlikely that the arms move at the
same velocity as a random coil. Simulations [18] show that
the friction coefficient not only depends on the DNA con-
formation, but that the deviation from the random coil
friction coefficient is length dependent. In translation
(t3), dense arrays force the DNA to move in a zigzag man-
ner, reducing the value of U relative to �0E. Moreover,
there may be a small electro-osmotic flow, which both
reduces U and varies from experiment to experiment. On
the other hand, the strand tends to be oriented in the
direction of the field shortly after leaving the posts, which
leads to a transient where the effective velocity is greater
than �0E. To avoid introducing any adjustable parameters,
we proceed here with the prescribed definitions of �, n�,
and U, keeping in mind their limitations.

The model predicts an average hooking time � �
�3=2�lc=U. Using some representative values for
T4 DNA [19], we predict the slope of � versus E�1 to be
42 cm s=V, independent of �. The experimental value is
also independent of �, but its numerical value (14 cm s=V)
is lower [4]. The agreement is reasonable given the sim-
plicity of the model, and we believe that uncertainty inU is
the main source of error. The model also predicts that the
average number of rows traversed between collisions, hni,
is n� 
 �1� ��=�. As indicated in Table I, the agreement
for low densities is remarkable. At the highest density, we
suspect that the uncertainty in n� between collisions is a
major source of error. A more complex collision model,
which accounts for relaxation between collisions, lateral
diffusion in the matrix, the effect of DNA elasticity [7], and
array disorder, might lead to better agreement with the
experimental data over the full range of parameters.

From this microscale model, the transition probability
density,  �n; t�, that a given cycle results in the DNA
molecule traveling through n rows in the time t is

 �n; t� �
2�U
lc

�1� ��n�n
�
exp

�
�
2U
lc

�
t�

lc 
 na
U

��
;

(2)
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TABLE II. Comparison of the model and experimental results
[4] on single T4 DNA molecules for �U� and �D�. Experimental
values are presented in the brackets next to the theoretical
prediction.

Mean velocity Dispersivity
Data set �U�=U �D�=Ua

1 0:59 (0:53� 0:08) 0:26 (0:027� 0:005)
2 0:47 (0:58� 0:11) 0:19 (0:154� 0:054)
3 0:43 (0:34� 0:06) 0:21 (0:054� 0:011)
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valid for n � n� and t � �lc 
 na�=U. Otherwise,
 �n; t� � 0.

The cyclic motion is a Scher-Lax [20] CTRW, which can
be solved exactly in Fourier-Laplace space. With s the
Laplace variable and k the Fourier variable, the walk has
the solution [21]

p�k; s� �
1���k; 0�
s�1���k; s�	

; (3)

where ��k; s� is the Fourier-Laplace transform of  �n; t�,

��k; s� �
X
n�n�

e�ikna
Z 1

�lc
na�=U
dte�st �n; t�: (4)

The mean velocity, �U�, and dispersivity, �D�, are then
computed by the following [21]: (i) differentiating
Eq. (3) an appropriate number of times with respect to k;
(ii) setting k � 0 in the derivatives; (iii) expanding the
result for small s and inverting to the time domain; and
finally (iv) using the standard relationships between the
Fourier transform of p, the moments of p, and the parame-
ters �U� and �D�. With some algebraic manipulations, we
ultimately arrive at the mean velocity

�U�

U
�

2��n� 
 1� ��
5�n� 
 2�1� ��

�

�
1


1

hni
�U
a

�
�1
: (5)

As in the Markovian case [12], the retardation from the
posts is the product of the average collision rate, 1=hni, and
the ratio of trapping to convection, �U=a. The dispersivity,

�D�

Ua
�
��n��2�10
 ��2n� � 11� 
 �1� n��2�2	

�5�n� 
 2�1� ��	3
; (6)

is markedly different from the Markovian model [12].
Before we compare Eqs. (5) and (6) to the experimental

data, it is useful to consider some limiting cases. When
� � 1, we recover the geometration results [14] �U� �
2U=5 and �D� � Ulc=125. When the posts vanish, d! 0,
we recover the free-solution velocity with no post-induced
dispersion. In the single-post limit (a! 1), �U� � U and
�D� � Ulc=5, clearly illustrating the Nixon-Slater [8]

‘‘catastrophic’’ dispersion. When the posts are very dilute,
the number of collisions is insufficient to alter the average
velocity, but the scarcity of collisions results in a large
dispersion. As a consequence, separations in very dilute
post arrays would yield broad, overlapping bands.

With our microscale model, �U� and �D� scale linearly
withU. Consequently, the model captures the experimental
scaling laws discussed at the outset; the band broadening
scales like E�1 and the resolution is independent of the
field. Moreover, we capture the increase in band broad-
ening with molecular weight [2].

We now compare our theoretical predictions to single-
molecule experiments with T4 DNA. The experimental
values are the results of a CTRW calculation based upon
the measured distribution of passage times through a
110 �m section of the array [4]. As Table II demonstrates,
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the velocity estimates are good, whereas we overestimate
the dispersivity. A sensitivity analysis shows that our val-
ues for �U� and �D� are most sensitive to a and increase in
sensitivity with decreasing lc. While some of the disagree-
ment between theory and experiment may be attributed to
uncertainty in the parameter values, we suspect that the
simplicity of our model plays a more important role. For
�U�, the experimental value for the densest array is below

the minimum value (0.4) predicted by the theory. This is
likely due to the zigzag motion in dense arrays. Indeed,
untrapped DNA in this array appeared to move between
collisions with a mobility closer to�0=2 [4]. Our predicted
dispersivity is too high because the microscale model
predicts much longer collisions than were observed in
experiments. A more sophisticated trapping model should
increase the agreement between the theory and experiment.

While single-molecule experiments are useful in assess-
ing the validity of the microscale model, in practice we are
most interested in capturing the separation resolution. For a
separation length L, the resolution is defined as [22]

Rs �
�jU�
1 � �U�

2j
�U�
1 


�U�
2

������������������������������
L
16

� �U�
1
�D�
1



�U�
2
�D�
2

�s
: (7)

In Fig. 2, we plot the predicted resolution per square root of
the number of post rows for a hypothetical separation
between �, 2�, and T4 DNA. The limited experimental
data are not in disagreement with the model. The sensitiv-
ity of our predictions to the parameters increases as the
difference in lc decreases, which impacts our ability to
make accurate predictions in sequencing applications. We
also gain insight into the optimization of the arrays, since
there is a plateau as the posts are moved farther apart. More
widely spaced posts imply a larger device, so our result
indicates an optimal post spacing on the order of 8 �m.

We have shown here how the Scher-Lax CTRW can be
used to analyze the non-Markovian motion of DNA in post
arrays. Using a simple model for  without any adjustable
parameters, this model captures the macroscale dynamics,
most importantly the separation resolution. We envision
that more sophisticated functions for  will appear in the
near future as more data in the spirit of Randall and Doyle
[7] become available. In particular, a revised microscale
model could incorporate different types of collisions [7,10]
5-3



0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

3 5 7 9 11 13 15

Post Spacing, a (µµµµm)

Sc
al

ed
R

es
ol

ut
io

n,
R

s
( a

/ L
)1/

2

λ / 2λ

λ / T4

2λ − Τ4

FIG. 2 (color online). Separation resolution per post row as a
function of the post spacing for d � 1:2 �m. The error in the
prediction from this choice of d is approximately 15%–30%.
The curves correspond to theoretical predictions for the resolu-
tion between � (48.5 kbp), 2� (97 kbp), and T4 DNA
(168.9 kbp). The experimental points are resolutions obtained
for d between 1.0 and 1:4 �m. 4, �� T4; �, �� 2�; and �,
2�� T4.
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and DNA acceleration after collisions [4], as well as
more precisely quantify the dynamics between post colli-
sions (i.e., relaxation, precise quantification of n�, etc.).
Moreover, the Scher-Lax CTRW can easily be modified to
include a different  for the first step [23], allowing us to
rigorously incorporate the effect of the DNA injection into
the matrix. We envision the model presented here will
serve as a template for future studies of this type.
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