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Differential growth in elastic materials can produce stress either through incompatibility of growth or
by interaction with the surrounding medium. In many situations, this stress can be sufficient to induce
shape instability in the growing medium. To gain better insight in growth-induced instabilities, the growth
of an elastic shell loaded with hydrostatic pressure or embedded in an elastic medium is studied. The
residual stress arising from the incompatibility of growth and the contact stress arising from the
interaction with the surrounding medium are computed with respect to growth and geometric parameters
and critical values for instability are obtained. Depending on these parameters, different modes of
instability can be obtained.
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Nondiffusive volumetric growth, the increase of bulk
mass in a given system by a source, is involved in many
fundamental biological processes such as morphogenesis,
physiological regulation, or pathological disorders [1]. It
is, in general, a process of enormous complexity involving
genetic, biochemical, and physical components at many
different scales and with complex interactions. Here, we
are interested in the mechanical description of volumetric
growth and its ability to generate stress-related instability
in soft tissues.

It has been known since the 19th century, through the
work of DeVries and Sachs in developing plants, that
growth can generate stresses in tissues [2]. Essentially, as
growth takes place with possibly different rates at different
locations within a given geometry, adjacent material points
may tend to separate or overlap. The material keeps its
integrity by developing residual stresses which remain
after growth ceases. These stresses can be seen by cutting
pieces of unloaded material and observing that the material
changes shape as residual stress is relieved [3]. This is
observed in woods and plants and is believed to play an
important role in regulation of some physiological systems
such as peak stress in arterial walls [4].

Stress can also develop in growing materials due to
pressure induced contact. For instance, as a solid tumor
grows inside a tissue, it exerts a pressure against the tissue.
Accordingly, stress builds up in the tumor and is believed
to inhibit growth, to lead to the collapse of the vascular
system, or to modify the tumor shape [5]. This contact
stress is not an intrinsic property as it depends both on the
growth and elasticity of the tissue and the response of the
surrounding medium.

An important effect of stress is its ability to generate
changes in geometry and shapes through buckling-type
instability. These instabilities are found in many problems
in classical engineering where stress is generated by exter-
nal loading [6], and they may play an important role in
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morphogenetic processes. For instance, it was argued in [7]
that the process of primary evagination in sea urchins may
be induced by a buckling instability and simplified physi-
cal models of drying gel beads seem to confirm this view
[8]. Other examples where buckling-type instabilities have
been associated with growth processes are the formation of
pattern in fingerprints and plants, the wrinkling of leaves,
organ initiation in the shoot apical meristem, shoot forma-
tion and tip growth in algae and filamentary microorgan-
isms, the development of epithelial spheroid, the growth of
blood vessels, and the formation of convolution in brain
development [9]. It has been shown recently that the resid-
ual stress induced by anisotropic growth can be sufficient
to create a buckling instability [10]. However, it was also
found that growth or resorption can help stabilize a mate-
rial by either increasing the effective thickness of the
material or by creating residual stresses opposite the ex-
ternal load.

At the biomechanical level, soft tissues with possibly
large strains and nonlinear anisotropic behavior are best
represented by hyperelastic materials and modeled within
the theory of finite elasticity in which their response to
stress is determined by a strain energy function [1]. The
modeling of such functions for tissues with given symme-
tries represents an important and active field of study
[4,11]. Growth can be modeled by a multiplicative decom-
position of the deformation gradient due to Rodriguez et al.
[12] similar to the one found in elasto-plasticity [13]. The
deformation tensor is assumed to be a product of a growth
tensor describing the local evolution of a mass element
with no geometric or external constraint and an elastic
response of the material describing the strain necessary
to ensure integrity and compatibility of the material. This
theory of material growth and its various generalizations
have been applied successfully to the modeling of many
physiological systems such as arteries, cartilage, muscle
fibers, heart tissues, and solid tumors [14]. The growth
3-1  2005 The American Physical Society
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FIG. 1. Radial and hoop stresses due to (a) shrinking in the
vacuum (�V � 1=2, i.e., 
 � �0:39), and (b) growth inside an
elastic medium (�V � 2, i.e., 
 � 0:378), for an elastic shell
with A � 1; B � 2 and �sh � �me � 1.
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tensor can be coupled to the strain and stress fields, the
material position in the medium, the density of nutrients, or
the concentration of morphogens. Of particular interest for
the present study is the problem of differential growth
where growth is position dependent and which is of fun-
damental importance in morphogenesis [15].

Here, we consider the model problem of a growing elas-
tic shell embedded in an elastic medium. The shell and the
surrounding medium are modeled by an incompressible
isotropic hyperelastic material [16]. These simplifying as-
sumptions are designed to enable us to extract important
qualitative features in order to gain some insight into the
processesofinstabilities inadifferentially growing medium.

The deformation of the material body is given by x �
��X; t� where X (respectively, x) describes the material
coordinates of a point in the reference (respectively, cur-
rent) configuration. Let Finc � Grad��� be the deformation
gradient obtained after an incremental growth step. As
described above, we assume that the gradient tensor is
the product of a growth tensor Ginc by an elastic tensor
Ainc so that [12]

F inc � Ainc �Ginc: (1)

The response of the material is given by a strain energy
function W � W�A� so that for a given elastic deformation
tensor A, the Cauchy stress tensor is T � A �WA � p1. In
this relation, WA is the derivative of W with respect to
(w.r.t.) A, and p is the hydrostatic pressure associated with
the incompressibility constraint. The equation for me-
chanical equilibrium is simply given by div�T� � 0, where
the divergence is taken in the current configuration. If the
body is loaded by a hydrostatic pressure P, the boundary
condition is given by the Cauchy stress in the normal
direction n of the boundary T � n � �Pn.

We first consider a radially symmetric deformation of a
growing shell under pressure with and without surrounding
medium. The growth tensor Ginc is assumed to be isotropic
but a function of the radial position r in the current con-
figuration; that is, Ginc � ginc�r�1. The decomposition (1)
represents an incremental growth step. Once (slow) growth
and (fast) elastic response take place, the shell continues its
growth, and after successive incremental steps the total
cumulative deformation is of the form F � A �G, where
G � g�r�1. For a given incremental growth ginc�r� � 1�
f�r� a� [with f�0� � 0, so that there is no growth at the
inner boundary], a suitable form for g�r� needs to be found.
Since the solution for a and r as a function of the initial
radius R at each step depends on the solution of a boundary
value problem (see below), there is no simple form for
g�r�. However, a numerical study of the incremental
growth process [17] reveals that for a simple linear incre-
mental law, cumulative growth is also well modeled by a
linear profile even for large variation of volumes. There-
fore, in the present study, we take g�r� � 1� 
�r� a�,
where 
 is positive for growth and negative for resorption.

We first consider the radial deformations of the shell in
the following cases: (i) a shrinking sphere in the vacuum
19810
and (ii) a growing shell inside an incompressible infinite
medium. In this case, we can write in the usual coordinates
�r; �; ’�, F � diag�@Rr; r=R; r=R�, A � diag��1; �2; �3�,
and since the material is assumed incompressible, �2 �
�3 � � and �1 � ��2. For simplicity, we assume that
both the elastic shell and the external medium are neo-
Hookean materials; that is, Wi � �i��

2
1 � �2

2 � �2
3 � 3�

(where i � sh or i � me for shell and for medium, respec-
tively). Let a � r�A� and b � r�B� be the radii in the
current configuration. The incompressibility condition de-
termines both the deformation R3 � A3 � 3

R
r
a r

2=g3�r�dr
and the strain ��r�� r=�gR�, up to the value of a that is ob-
tained from the boundary conditions on the Cauchy stress.
The radial component of the Cauchy stress is given by

t1�r� �
Z r

a

�
r
@��Wsh��

�2; �; ���dr; (2)

with boundary conditions t1�a� � 0, and t1�b� � �P for
free growth subject to a compressive hydrostatic pressure
P> 0. When growth occurs in a medium, the Cauchy
stress in the medium is given by a similar expression
with g � 1; W � Wme and integration from b to r. The
condition is then t1�1� � 0 and equality of radial stresses
at r � b. Once the radial stress is known, the deformation
is completely determined and the hoop stress is given by
t2 � t1 �

�
2 @��Wsh���2; �; ���. Typical profiles of radial

and hoop stresses for vanishing external pressure are given
in Fig. 1. The constant 
 is fixed by the overall increase in
volume �V � �b3 � a3�=�B3 � A3�. Resorption creates a
compressive residual stress, whereas growth in an elastic
medium creates both compressive contact stress (close to
the outer boundary) and tensile residual stress (around the
inner boundary).

The previous analysis provides a complete solution for
the finite radial deformation and the question is now to
study the stability of such configurations by considering
axisymmetric infinitesimal deformations superimposed on
the finite radial deformation. Would the residual stress
created through growth and resorption be sufficient to
destabilize the shell? To answer this question, we write
the infinitesimal gradient tensor in the reference configu-
ration F � �1� �F�1�� � F�0�, so that F�1� � grad���1�� and
3-2
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FIG. 2. Instability of the shrinking shell. For an initial thick-
ness A=B, the shell first becomes unstable due to residual stress
when the thickness a=b reaches the critical value given by the
solid curves. The solid curves are obtained at constant pressure
Pi given by the critical value for the instability of the ith mode
without growth. The dashed lines denote the regions of the mode
of deformation n found at the bifurcation (the corresponding
configurations n � 4; 5; 6 are shown, but their amplitude is not
predicted by the theory).
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since growth is given as an outside source defined on the
radial configuration, it is not affected by the perturbation
and the elastic deformation tensor is A � �1� �A�1�� �

A�0�: Similarly, we expand the Cauchy stress T � T�0� �

�T�1� � O��2�. The expansion of the constitutive equation
leads to [10]

T�0� � A�0� �W�0�
A � p�0�1;

T�1� � L:F�1� � F�1� �A�0� �W�0�
A � p�1�1;

L:F�1� � A�0� �W�0�
AA:F

�1� �A�0�;

where p � p�0� � �p�1�, L is the instantaneous elastic
moduli tensor (given explicitly in [16], p. 412), and W�0�

A ,
W�0�

AA are the first and second derivatives of W with respect
to A evaluated on A�0�. The stability analysis proceeds by
solving div�T�1�� � 0:

For the growing shell, we consider axisymmetric defor-
mation of the shell of the form ��1� � �u; v; 0�T, with u; v
independent of ’. The nonvanishing components of
div�T�1�� � 0 and the incompressibility condition form a
system of 3 coupled partial differential equations of second
order for u, v, and p�1� as a function of �r; �� with coef-
ficients depending on the finite-strain solution obtained to
zeroth order. To solve this problem, we expand the solution
in Legendre polynomials and obtain a fourth-order differ-
ential equation describing the amplitude of the field u w.r.t.
the nth Legendre polynomial. This equation generalizes
the classical one for the stability of nongrowing shells
under pressure [16]. For each mode n, the solution of this
boundary value problem is possible only for a particular
combination of parameters a � a�
; �; n�, where � �
�b� a� is the width of the shell in the current configura-
tion. These values of a are the critical values of the inner
radius where the nth mode first appears. For small �, these
curves in parameter space can be obtained by perturbation
expansion in the form a�a0�a1��a2�

2�O��3�, where
a0 is the first positive solution of �n�2��n�1�a120 �
2�n2�n�7�a60�3n�1�n�, a1�1=2a30�1=2
a0�1=2,
and a2 is given by a similar expression in terms of 
 and
a0 (but too long to be given here). The method is given in
[10], and its validity and domain are checked numerically
by the determinant method for fourth-order linear bound-
ary value problems [18,19]. Once the bifurcation of each
individual mode is known, the critical value ac where the
shell first bifurcates (independently of the mode number) is

ac � 1�
�
1

3
�

1

2


�
��

1

24
�2� 4
� 5
2��2 � O��3�:

For a given �, the value of ac and bc � ac � � can be used
in Eq. (2) to solve t1�bc� � �P with respect to 
. The
value of 
c � 
�ac; bc� can then be used to compute the
initial radii A and B, hence, the current and initial thick-
nesses (as shown in Fig. 2). The selected mode shown in
Fig. 2 is given by the largest integer n less than
19810
N �

����
3

�

s  
1�

������
�
12

s
�

8� 3

24

��
29
2 � 220
� 282

384
�2

!
:

The mode selected at the bifurcation depends on the initial
thickness in such a way that thinner shells become unstable
with an increasingly high mode number as found in clas-
sical shells under compression (albeit for different thick-
ness values). The basic physical process of the instability
shown in Fig. 2 is as follows: A shell with no external
loading of thickness A=B becomes unstable when both its
current thickness a=b is small enough and sufficient com-
pressive residual stress has built up in the shell. Under a
pressure Pn chosen to be the critical pressure for mode n,
the shrinking shell becomes unstable with possible mode
m, 2 
 m 
 n.

We now turn our attention to the case of a growing shell
inside an incompressible elastic medium. The stability
analysis in such interfacial problems is delicate due to
the matching of stresses at the interface in the deformed
configuration. Nevertheless, some insight can be gained by
modeling the problem by assuming that the outside me-
dium creates a hydrostatic compressive force equivalent to
the one created through growth and contact. In this context,
we compute a lower bound for instability in terms of the
initial thickness and the volume increase for a different
relative medium response �� � �me

�sh
. The linearized equa-

tion for the instability threshold is the same one as in the
previous situation, and the same estimate for small current
thicknesses can be used. For each �, the value of 
 neces-
sary for the radial problem to satisfy the boundary values
can be computed. Once such a value is known, the initial
thickness and volume of the current configuration can be
found for different values of �� as shown in Fig. 3.
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The analysis presented in this Letter shows the effect of
differential growth on the stability of shells. In a shrinking
shell, two effects drive the instability, the shell thickness
decreases and the residual stress is compressive. Not sur-
prisingly, in the absence of hydrostatic pressure, the neo-
Hookean shell is stable under moderate shrinking and
becomes unstable only when a large portion of the initial
volume has been resorbed. Under compressive loads, the
shell can rapidly become unstable with a lower or equal
mode number than the one given by the initial thickness. In
the case of a growing shell creating compressive stress
through contact, the instability for a thin shell is driven
rapidly by the volume increases and the rigidity of the
external medium.

The assumptions used in this Letter were chosen for the
purpose of illustrating the general problem of stability in a
growing medium and identifying the basic mechanical
processes. Clearly, these assumptions do not correspond
to realistic tissues and many more sophisticated models
can be used for specific physiological systems such as
more refined constitutive laws for both tissues and the
external medium. Nevertheless, we have shown that re-
sorption or growth can induce sufficient stress to render the
growing tissue unstable even in the absence of external
loading, a process that could be of fundamental importance
in morphogenesis. Similarly, growth can induce stresses
which help stabilize tissues as they operate in physiologi-
cal regimes.
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