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Two-Dimensional Structure and Particle Pinch in Tokamak H Mode
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Two-dimensional structures of the electrostatic potential, density, and flow velocity near the edge of a
tokamak plasma are investigated. The model includes the nonlinearity in bulk-ion viscosity and
turbulence-driven shear viscosity. For the case with the strong radial electric field (H mode), a two-
dimensional structure in a transport barrier is obtained, giving a poloidal shock with a solitary radial
electric field profile. The inward particle pinch is induced from this poloidal asymmetric electric field, and
increases as the radial electric field becomes stronger. The abrupt increase of this inward ion and electron
flux at the onset of L- to H-mode transition explains the rapid establishment of the density pedestal, which
is responsible for the observed spontaneous self-reorganization into an improved confinement regime.
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Turbulent transport in high temperature confined plas-
mas has become one of the most challenging issues in
plasma physics. In particular, the formation of transport
barriers in toroidal plasmas has been the focus of research
[1]. A typical example of this is H-mode transition [2]. Key
mechanisms to understand the H-mode transition include
bifurcation of the electric field [3,4] and associated sup-
pression of turbulence by electric field structures [5,6].
Thus significant attention has been devoted to studying
the steep radial electric field structure in the L-H transition
physics [7]. The nonlinear formation mechanism of the
radial electric field structure has been studied with biased
limiter experiments in which externally driven H-mode
transition was induced [8,9]. Theoretical studies have clari-
fied the formation mechanism of the solitary radial electric
field structure [10,11]. The nonlinearity in the relationship
between the radial electric field and the radial current has
been examined explicitly in other toroidal plasma experi-
ments [12].

Although significant progress towards understanding the
radial electric field structure has been made, there still
remain fundamental issues. For instance, the rapid estab-
lishment of the density profile pedestal after the onset of
the L-H transition [13] remains unexplained. It is well
known that turbulent diffusivity decreases rapidly after
transition. However, this reduced diffusion makes the
time for reaching a steady state much longer than observed.
Another issue is the formation of a poloidal shock associ-
ated with the large poloidal flow. Theories have predicted,
in which only poloidal variation was taken and a radial
structure was neglected, that the poloidal shock can appear
in H-mode plasmas [14,15]. Some experiments have in-
dicated poloidal asymmetry [16]. If such a poloidal shock
exists, a large inward particle pinch could be induced [1],
and may influence the pedestal formation. This considera-
tion motivates the study of two-dimensional structure at the
transport barrier. Some progress has been reported [17,18],
but the understanding is far from satisfactory.

In this Letter, we study the two-dimensional structure of
the electrostatic potential, density, and flow velocity near
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the edge of a tokamak plasma. A set of equations, which
describes the transition to the steep radial electric field
structure as well as poloidal inhomogeneity, is derived by
considering the nonlinearity in bulk-ion viscosity and
(turbulence-driven) shear viscosity. The poloidal asymmet-
ric structure generates inward particle pinch, and gives an
explanation for a rapid establishment of the edge pedestal
on the L-H transition.

We consider a large aspect ratio tokamak where a cir-
cular cross section and the coordinates r, �, and � are used
(r, radius; �, poloidal angle; � , toroidal angle). Poloidal
variations of the density and the electrostatic potential are
considered, but that of the temperature is neglected.
Electrons are isothermal, ions are adiabatic, and ni �
ne � n is taken, where ni and ne are the ion and electron
density, respectively. Derivation of the model equation
follows Ref. [14], but the radial flow and shear viscosity
are taken into account here [19]. By these terms, radial and
poloidal structures are coupled with each other. The struc-
tures are governed by the momentum balance equation,

min
d
dt
~Vi� ~J� ~B� ~r�pi�pe��� ~r	�$i�bulk�� ~r	�$i�shear;

(1)

where ~Vi is the flow velocity, ~J is the plasma current, pi
and pe are the ion and electron pressures,�$i is the viscosity
tensor of ions, and mi is the ion mass. Pressure p � nT,
and constant temperature T is assumed. The viscosity is
divided into two terms: bulk viscosity given by a neoclas-
sical process [20], and shear viscosity given by an anoma-
lous process [1]. The viscosity of electrons is neglected
because it is smaller by a factor of the order of

��������������
me=mi

p
.

The flow velocity is written as ~V� ~Vk�
~E� ~B
B2

��� I
rRB2

�

@�
@� ;

KBp
n ;

KB�
n � 1

Bp
@�
@r �, where � is the electrostatic potential,

K � nVp=Bp corresponding to the poloidal flow, and I �
R2 ~B 	 r� . The toroidal symmetry is utilized in this descrip-
tion. The parallel component and averaged poloidal com-
ponent of the momentum balance Eq. (1) are given to be
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(3)
where h i denotes the flux surface average. The radial flow
is taken into account, so @�=@� terms are involved in the
left side of Eqs. (2) and (3). Using the viscosity tensor�$i �
�pk � p?��b̂ b̂� I

$
=3�, where �pk � p?� is the pressure

anisotropy and b̂ is the unit vector parallel to the magnetic
field, the bulk viscosity term can be written as

� ~B 	 ~r	�$i�bulk �
2

3

Bp
r
@
@�

�pk �p?�� �pk �p?�
Bp
B
1

r
@B
@�
:

(4)

The first term of Eq. (4) is dominant, so only this term is
kept in Eq. (2) hereafter. In contrast, the surface average is
taken in Eq. (3), in which the second of Eq. (4) remains.
The pressure anisotropy was rewritten in terms of B and n
in Ref. [21], and the explicit form is not reproduced here.
The shear viscosity is given by the second derivative of the
flow velocity, and here simply given to be

� ~B 	 ~r 	 �$i�shear � �min� ~B 	 r?
2 ~V; (5)

where � is a shear viscosity coefficient. The coefficient �
depends on the radial electric field and has spatial varia-
tion, but we take it as constant in space for simplicity. The
Boltzmann relation
19500
n � �n exp
�
e��
Ti

�
(6)

is adopted here to determine variables, where �f and �f
represent the spatial average and perturbed parts of quan-
tity f, respectively. The variables that must be determined
from Eqs. (2), (3), and (6) are K, �, and n, which have
radial and poloidal variations. A new variable � � ln�n= �n�
is introduced, which is directly related to the potential
perturbation with Eq. (6).

The case when the poloidal Mach number Mp � 1
[Mp � Er=�vtiBp�, where vti is the thermal velocity of
ions] is the main interest in this Letter, and the shock
ordering, which is � � O�"1=2�, is adopted, where " is
the inverse aspect ratio. " is taken to be small because
the calculation is carried out only near the edge in a large
aspect ratio tokamak. A condition Vr=Vp � 1 is satisfied,
even if the strong poloidal shock exists. This condition is
confirmed, a posteriori, by the derived structures. The
condition Vr=Vp � 1 makes the model equation simpler.
The continuity equation in a steady state div�nV� � 0
shows K is a flux surface variable. Expanding Eq. (2)
with �, and taking up to O�"�, the following model equa-
tion is obtained:
� �̂r2
B0
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where Mp�KB0=� �nvtiCr�, �̂��=�rvtiCr�, A�Mp
2=2�

5=�36Cr
2�, Cr

2��5=3�Te=Ti�=2, D�4
����
�

p
IpsKB0=

�3 �nvtiCr2�, and Ips defined in Ref. [14] has nonlinear de-
pendency onMp. (This is the equation for a strong toroidal
damping case when Mp � �I=�vtiB0BpCrR���@�=@r�. In
this case Mp is proportional to the radial electric field.)
Now Eqs. (3), (6), and (7) determine the structure. This set
is solved as follows: A profile ofMp is obtained by solving
Eq. (3) independently from Eq. (7). Equation (3) is the
same as the equation used for obtaining a radial profile of
the radial electric field in the previous H-mode transition
model. Mp (including the radial profile) is put into Eq. (7),
and the two-dimensional structure of � is obtained. Then
the radial velocity is deduced.

Using these model equations, analysis is carried out in
the region near the plasma edge, r � �a� d� � a, where
r � a is the position of the last closed flux surface. We
consider the case that the strong radial electric field is self-
organized in the middle region of this domain, and choose
the boundary condition to be � � 0 at r � �a� d� and a.
This is an idealization that no perturbation exists outside of
this region (such as the edge barrier or biased region).
Equation (7) is solved with the given Mp profile, which
has been obtained in literature [11]. (In performing calcu-
lations examples of parameters are chosen as R � 1:75�m�,
a � 0:46�m�, B0 � 2:35�T�, Ti � 40�eV�, Ip � 200�kA�,
and the boundaries r� a � 0, �5�cm�.)

We first study the case thatMp is homogeneous to clarify
the competition between the steepening by the �V 	 r�V
nonlinearity and the radial diffusion. In the absence of
shear viscosity, the poloidal shock is predicted to appear
as was given in [14]. When the shear viscosity exceeds a
2-2
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threshold value �̂ > �ib � Dd2Bp=�12a
2MpB0�, Eq. (7)

can be simplified and have a solution to be

��r;���
"

�����������������������
D2�4Mp

4
q
2�̂a2Mp

Bp
B0

�r�a��r�a�d�sin����%�;

(8)

for the intermediate regime. � is inversely proportional
to � in this regime. Equation (8) gives the maximum of �
at the point � � �=2� �%, where tan�% � �D=�2Mp

2�

and the maximum gradient of � is �@�=@��max �

"vthCrBpd
2

������������������������
D2 � 4Mp

4
q

=�8aMpB0�� at the point ����

�%. When the shear viscosity is very strong �̂B0=Bp � 1,
we have ��r; �� � �"=a2��r� a��r� a� d� cos�, which
has no dependence on � and Mp. In this case, no strong
shock appears. In this way, the magnitude of � determines
the two-dimensional structure. Experimentally � is esti-
mated to be around 100�m2=s� [22,23], and thus we take
� � 1�m2=s� in the following calculation.

We next study the two-dimensional structure by em-
ploying the solitary structures of the radial electric field,
which appear in the biased electrode experiments or in the
H-mode edge barriers. Profiles of Mp are shown in Fig. 1,
which is taken to illustrate the bifurcation of the radial
electric field [11]. Under this condition, Eq. (7) is solved.
Figure 2 shows a profile of the poloidal electric field. The
region where Mp has a large value is localized in the
middle of the shear region, so a localized large poloidal
electric field exists at the points of the shock in those with
largeMp. In addition, the magnitude ofMp varies in the ra-
dial direction, and the poloidal position of the shock varies
in the radial direction accordingly. We conclude that the
two-dimensional structure of the edge transport barrier
exists and influences the plasma flow, for the plasma
parameters that are relevant to the H-mode confinement.

Comparison of the strong inhomogeneous Er case with
the weak homogeneous Er case clarifies the formation of
the localized steep two-dimensional structure. The strong
Er case has a peaked Er profile in the middle of the
calculated region, although the weak Er case has a spatially
0
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FIG. 1. Solitary radial profiles of Mp.
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constant profile. The strong Er case has a large potential
perturbation (the maximum value ��max � 50�V� in this
case) and a localized large poloidal electric field where the
poloidal flow shear is strong (the maximum value E�max �
63�V=m�). This large poloidal electric field generates a
large E� B flow pointing to the radial direction (the
maximum value Vrmax � 28�m=s�). In the weak Er case,
each value has ��max � 4�V�, E�max � 9�V=m�, and
Vrmax � 4�m=s�, respectively, which are one order smaller
than in the strong Er case.

Finally, we discuss the impact of this two-dimensional
structure on the formation of the pedestal of the transport
barrier. The poloidal structure is found to generate radial
flow much larger than 1�m=s�, but this large flow region is
poloidally localized and the flow changes its direction
according to the poloidal position. We calculate the flux-
surface-averaged flux in the radial direction hnVri �
hnEp=Bi by the use of the two-dimensional solution.
Figure 3(a) represents the radial profiles of the flux-sur-
face-averaged radial flux in the strong and weak Er cases,
respectively. The radial flux has a negative value, so it
points inward to the plasma center. Inward flux arises
from poloidal asymmetry. Figure 3(b) shows the relation-
ship between the maximum of Mp and the particle pinch
velocity. A moderate inward pinch velocity Vr � 1�m=s�
exists even in the weak Er case (like the L mode). In the
strong Er case, which is relevant to the H-mode or biased
electrode experiments, a larger radial flow (inward pinch)
is induced. It should be noticed that not only the large
magnitude of poloidal flow but also the gradient of poloidal
flow affect to increase the inward pinch velocity.
Figure 3(a) shows that the radial flux has a maximum in
the radial position whereMp shear is large. That is coming
from the form of the shear viscosity Eq. (5) that combines
the poloidal asymmetry of the magnetic field B and the
gradient and curvature of flow velocity.

The increase of inward convective particle flux has a
large impact on the pedestal formation on the L-H transi-
tion. In the L-H transition,Mp changes abruptly, so that the
FIG. 2 (color online). Two-dimensional structure of the poloi-
dal electric field with strong and inhomogeneous Er. Given Mp

profile is that with the largest peak height in Fig. 1.
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convective transport changes abruptly in the transport
barrier region in the same time. The suppression of trans-
port and the reduction of diffusive transport occurs in the
transport barrier. The reduction of the diffusion coeffi-
cient explains the steepening of the H-mode pedestal, but
the time constant of the pedestal formation is difficult
to explain. That is, the necessary time for reaching the
final pedestal gradient in the region with the width & is
given by ' � &2=Da, where Da is the reduced transport
coefficient in the H mode. It takes long time to form
the pedestal (' � 25�ms� when & � 5�cm� and Da �
0:1�m2=s�). The H-mode pedestal can be formed in a
much shorter time '� 10�ms� [13]. If the convective
velocity increases abruptly, the time constant of the ped-
estal formation is represented to be ' � &=Vr (' � 5�ms�
when & � 5�cm� and Vr � 10�m=s�), so a sudden increase
of the inward pinch flux is a candidate for the cause of the
rapid H-mode pedestal formation.

In summary, multidimensionality was introduced into
H-mode barrier physics in tokamaks. The radial steep
structure in the H-mode and the poloidal shock structure
with the large poloidal flow were taken into account in a
self-sustained system. The model equations with shear
viscosity were derived. The magnitude of shear viscosity
determines the steepness and the position of the shock
structure. In shock ordering, a structure of the flux-sur-
face-averaged part is solved first, and using thisMp profile,
a two-dimensional structure can be obtained iteratively.
The one-dimensional model that has been used to study
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the L-H transition condition [7] is validated by this two-
dimensional analysis. The radial solitary structure of the
strong radial electric field was found to be associated with
the poloidal shock structure for the parameters that are
relevant to H-mode plasmas. The ion and electron inward
pinch flux exists, and has a magnitude of O�1–10��m=s� in
an H-mode transport barrier. An abrupt increase of this
convective transport at the onset of the transition was
predicted by this theory, which provides a new explanation
of rapid H-mode pedestal formation.
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