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Kinematic Characterization of Valvular Opening
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The evaluation of the valvular opening due to a pulse flow, as is the case of cardiac valves, requires the
knowledge of the leaflets material properties and the coupled solution of the fluid and solid equations. This
approach is not commonly feasible. A different approach is introduced here to describe the opening
behavior of valvular leaflets by a functional kinematic relationship. The asymptotic analysis, in the limit
of leaflet opening without vortex shedding, is presented for a two-dimensional rigid leaflet model under
the irrotational scheme. The approach is then verified by numerical solution of the Navier-Stokes equation
in asymptotic and nonasymptotic conditions.
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Phenomena involving the dynamic interaction between a
fluid and a movable boundary are encountered in many
applied contexts. Such interactions are common in the
cardiovascular network, where they range from the flow
over a compliant elastic wall to the flow in the presence of a
moving valve. This work was originally motivated by the
need to understand and model the pulsed flow through the
bileaflet mitral valve, that the blood crosses when passing
from the left atrium to the left ventricle of a human heart.
Similar problems arise in industrial devices involving the
flow passing through orifices with movable doors that
prevent a return flow.

Commonly, when the flow pushes onto the upstream
face of a closed valve the leaflets open rapidly with the
fluid making little resistance to it. The mathematical mod-
eling of a fluid-valve interaction is made complicated by
the large motion of the thin leaflets within the flow domain
and their rapid response to the force exerted by the accel-
erating fluid. A rigorous mathematical model should be
based on the equations of fluid mechanics for the flow,
those of solid mechanics for the structure, the proper
coupling relations, and tackle the problem of the solution
of the resulting system. Recent numerical studies [1,2]
began to consider such complete numerical approaches,
that employ finite elements and a coupling strategy, to
reproduce the flow in models of the aortic valve. A nu-
merical technique dealing with a simplified kind of inter-
action was introduced previously (see [3]). That approach
is interesting and, in principle, mathematically well posed;
however, when it is applied to discrete systems, it gives rise
to unrealistic distributions of stress on the solid.

An essential ingredient of a complete numerical model-
ing is the proper mechanical description of the valvular
large deformation regime and the knowledge of the actual
nonlinear elasticity parameters, commonly neither homo-
geneous nor isotropic. A homogeneous and isotropic Neo-
Hookean elastic structure was used in [1] as a possible first
approximation for the aortic valve. A linearly elastic leaf-
let, with no resistance at the constraint, is considered in the
model problem of [2]. In general, either the valve material
behavior and its parameters are unknown and quite difficult
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to assess in physiological applications. For this reason, in
addition to the modeling difficulties, the study of fluid
flows in presence of moving leaflets often appears as a
prohibitive task.

An asymptotic representation of the leaflets dynamics is
introduced here. It follows from a fluid dynamics analysis
of the fluid-solid interaction and does not depend on either
the material structure or its elastic properties. After ac-
counting that a leaflet is a structure where vortex shedding,
if any, occurs from the trailing edge only, we consider here
the limiting condition when the leaflet moves such that
there is no vortex shedding from the leaflet trailing edge. In
fact, vortex shedding would produce a pressure drop at the
edge with the result of a reduction of pressure on the down-
stream face and an increase of the force acting on the
leaflet [4] to possibly accelerate it. When the leaflet moves
fast enough, vortex shedding is inhibited, while the leaflet
cannot move faster than this, e.g., pushing the flow instead
of making resistance, unless externally activated. In other
words, the no shedding assumption corresponds to consid-
ering the fastest possible motion of a massless leaflet.

The asymptotic assumption is in qualitative agreement
with the results from the cited numerical simulations [1,2]
as well as experimental observations [5–8] that showed
how, during the opening phase, a normal physiologic leaf-
let moves approximately with the fluid without significant
generation of vorticity downstream until it approaches its
end of stroke position. Therefore the no shedding assump-
tion represents limiting conditions that well approximate
the normal valvular opening.

The analysis is applied here to the case of a rectilinear
leaflet in order to make the mathematics as simple as pos-
sible, still retaining the complete modeling issues. There-
fore the results do not explicitly apply to the mitral valve.
The present analysis is theoretical and finalized to the
description of a method that can be applied in the study
of many specific applications.

With this in mind, we consider a simple model problem
in a two-dimensional half channel of width H and a pulsed
flow of period T. Taking H and T as the unit of length and
time, respectively, the dimensionless flowing discharge is
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assumed to be V�t� � Sr�1 �1� cos�2�t��=2, where Sr �
H=�VpeakT� is the Strouhal number and Vpeak is the dimen-
sional section-averaged peak velocity. A channel Reynolds
number is Re � HVpeak=�, where � is the kinematic vis-
cosity of the fluid. A rectilinear leaflet of unitary length can
rotate clockwise about one end kept hinged on the inferior
wall; the angle between the plate and the wall is indicated
with ��t� such that when � � �=2 the channel is closed by
the plate and when � � 0 the plate lays on the wall. The
geometry is sketched in Fig. 1. The points along the plate
are identified by a material coordinate s ranging from
s � 0 at the wall hinge to s � 1 at the trailing edge. The
complex number z � x� iy is used to indicate a point in
the physical plane; the leaflet is thus found on z � sei�.
When the flow starts, the channel is closed with the plate in
the vertical position, ��0� � �=2.

The problem can be solved in the limit of high Reynolds
number, Re ! 1. In this limit the flow is irrotational with
the exception of possible rotational singularities [4,9]. The
undisturbed velocity profile is uniform, vx�t; x; y� � V�t�,
with a zero-thickness boundary layer on the inferior wall.
The additional velocity due to the presence of the rotating
plate can be represented as that of a vortex sheet whose
strength ��t; s� is chosen to satisfy the impermeability
boundary condition on the plate itself. This condition is
transformed, following the panel method approach [10], in
the integral equation, where the time dependence is omit-
ted for brevity,
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0
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FIG. 1. Sketch of the model problem.
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s0, its symmetric image with respect to y � 0 to guarantee a
zero normal velocity on the lower wall, and their infinitely
periodic—period 2—images along y to account for the
zero normal velocity in y � 1 [11]. The operator =, the
imaginary part of its argument, is employed to extract the
velocity component normal to the leaflet after the complex
velocity is rotated by ei�.

The resulting irrotational velocity field presents a square
root singularity at the trailing edge [4,9]; this singularity
does not exist in a real flow with arbitrarily small but
nonzero viscosity. Mathematically, the singularity is re-
moved by imposing the Kutta condition that the velocity
is finite at the edge and is written here as ��t; 1� � 0. This
condition is commonly satisfied, physically, by a shedding
of vorticity from the trailing edge and the consequent
establishment of a pressure drop between the two faces
of the edge [4,9]. Alternatively, as considered in the present
asymptotic approach, the leaflet can rotate such that there
is no shedding, the motion itself, the value of _�, is such to
satisfy the Kutta condition.

The solution to (1) is found numerically by a panel
method approach [10]. The vortex sheet is divided into N
segments, of length 1=N, centered in sk � �k� 1=2�=N, of
constant strength �k, k � 1 . . .N. The integral of the kernel
(2) is evaluated analytically on each constant-strength seg-
ment. The discrete version of Eq. (1) is satisfied on each
point sk and becomes a set of N linear equations on the
N � 1 unknowns �k and _�. The Kutta condition, written in
terms of the last three �k by quadratic extrapolation, be-
comes the N � 1th linear equation. The solution of the
linear system does not change appreciably when N is
varied from 128 to 1024. The resulting distribution ��s�
is zero at s � 0, 1 and presents one maximum whose
position moves towards smaller values of s when �! 0.
Equation (1) also shows that the solution depends linearly
on the instantaneous value of V�t�. The normalized angular
velocity _�=V is thus a function of � only; this dependence
is a characteristic curve of the leaflet _�=V � f���. The
solution for this geometry is reported in Fig. 2.

When the plate rotates in agreement with its character-
istic curve, the Kutta condition is instantaneously satisfied
by the proper angular velocity, _�, and the pressure is
continuous at the trailing edge. When the leaflet rotates
slower, not fast enough to satisfy the Kutta condition, a
vortex shedding develops and creates an additional open-
ing force (by lowering pressure on the downstream face).
This would occur when the body finds resistance (for its
mass, elasticity, viscosity) and is unable to follow the
asymptotic regime. On the opposite, if the leaflet rotates
more rapidly (for an external activation, or for its inertia
during flow deceleration) an upstream vortex shedding
would induce a positive pressure jump to decelerate its
motion.

The corresponding leaflet dynamics, ��t�, corresponding
to the time law V�t�, depends on the value of the Strouhal
number. The time evolution is computed by numerical
2-2
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FIG. 2. Functional kinematic relationship of valvular opening,
asymptotic curve (solid line), approximate asymptotic curve
(dashed line), and arbitrary 
20% nonasymptotic curves (dotted
line).
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integration of the characteristic curve _� � V�t�f��� with a
third order Runge-Kutta scheme; the reported solutions
have been tested to be independent from the time discre-
tization. The results from a series of simulations at differ-
ent values of the Strouhal number are shown in Fig. 3. The
value of the Strouhal number directly affects the ability of
the flow to open a valve. When the Strouhal number is too
large the leaflet is unable to complete its opening by the
single pulse inflow; when it is small the valve opens very
rapidly. For reference, the value of this Strouhal number for
a mitral valve is about 0.1 and it is not much variable with
the physiological frequency (remember that the period T
employed here is not the heartbeat period but the dura-
tion of the diastolic E wave only). It is worth to point out
that, when the leaflet is not massless, leaflet inertia will
reduce the ability to follow rapid flow accelerations; its
motion will present an initial slower acceleration and
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FIG. 3. Valvular opening profile for different values of the
Strouhal number.
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possibly higher, or longer lasting, velocities during flow
deceleration.

Before closing this subsection we wish to mention that
the dashed curve in Fig. 2 represents the approximation

_�
V

�
2 sin�

sin�� 2
: (3)

It is computed assuming that the average velocity on the
open part of the channel, �V � _�=2�=�1� sin��, gives a
component round the edge equal to � _�; it is therefore an
approximation of the Kutta condition. The approximation
(3) presents the proper limiting behavior and otherwise
underestimates the modulus of the angular velocity. In
the present ideal model, the formula (3) has little value;
such an approximate approach could be useful in complex
conditions (possibly three dimensional) when a theoretical
calculation is unpractical.

The characteristic leaflet curve, _�=V � f���, is a de-
scription of the asymptotic opening dynamics. In principle,
this sole curve can be used to evaluate valvular opening.
The profile of Fig. 2 was evaluated in the limit Re ! 1; its
validity is now analyzed at a moderate value of the
Reynolds number by the numerical solution of the two-
dimensional Navier-Stokes equations. The flow starts from
rest at t � 0 and the plate is subjected to a predetermined
motion ��t� corresponding to the profile V�t�.

The two-dimensional Navier-Stokes equations are writ-
ten in the vorticity stream function, �!; �, formulation
[12,13]. The vorticity equation
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� �SrRe��1r2!; (4)

with the Poisson relation r2 � �!, is solved on a dis-
crete domain using second order centered finite differences
[13]. The moving plate is reproduced by a !,  version of
the basic immersed boundary approach [14] where the grid
points nearest to the plate are marked as boundary points.
This approach, although less accurate about the immersed
boundary, allows us to simulate the system for any valvular
position including when it is closed, � � �=2, and open,
� � 0. On the other side, it requires a high resolution to
avoid the solution degrading about the immersed bound-
ary; the results have been computed with a resolution
�x � �y � 1=128 without appreciable differences from
1=64. The time advancement is performed with a second
order Crank-Nicholson method, implicit for the viscous
term and Adam-Bashfort for the nonlinear term.

A Navier-Stokes simulation has been first performed in
correspondence of the asymptotic valvular motion that
automatically satisfies the Kutta condition in the irrota-
tional model. The Strouhal number is Sr � 0:1 and the
Reynolds number has been set to Re � 103. Results show
that indeed no vortex shedding develops during the entire
simulation and confirm the validity of the characteristic
curve of Fig. 2 at moderate Re; one snapshot of the flow
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field is shown in Fig. 4(a), at t � 0:25. Two simulations
have been run with an accelerated and decelerated valvular
motion obtained by multiplying the theoretical angular
velocity with the function 1
 0:1�1� cos4�� that gives
a maximum difference of 
20% with respect to the theo-
retical value. This form has been arbitrarily chosen to have
the same limiting behavior when � � 0, �=2, such that
either the mass conservation is guaranteed when the valve
is closed and the valve cannot pass beyond � � 0. These
profiles are also shown, dotted, in Fig. 2. The results, in
Figs. 4(b) and 4(c) for the slower and faster profile, re-
spectively, demonstrate that when the leaflet moves slower
than the asymptotic value, pressure is higher on the up-
stream face and a forward vortex shedding is found. On the
19450
opposite, when the valve is faster, a backward vortex
shedding establishes.

The opening motion of the valvular leaflets should be
derived by integration of the equation of motion for the
solid structure, coupled in a strong interaction with the
fluid evolution. This approach is commonly unpractical,
because either the leaflet mechanical structure is not ade-
quately described or material parameters are unknown. In
addition, the modeling of a realistic fluid-structure inter-
action, that is of the strong type, is still challenging and
many results (that employ extreme under-relaxed cou-
pling) are questionable. We have introduced the asymptotic
description of the valvular motion on the basis of its
kinematics only. The asymptotic characteristic curve rep-
resents a reference bound to realistic dynamics either
modeled or experimentally measured. On this basis, a
real characteristic curve can be reconstructed using avail-
able data. It could represent the principal characterization
of the valvular dynamics.
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