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Structural Phase Transitions of Vortex Matter in an Optical Lattice
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We consider the vortex structure of a rapidly rotating trapped atomic Bose-Einstein condensate in the
presence of a corotating periodic optical lattice potential. We observe a rich variety of structural phases
which reflect the interplay of the vortex-vortex and vortex-lattice interactions. The lattice structure is very
sensitive to the ratio of vortices to pinning sites and we observe structural phase transitions and domain

formation as this ratio is varied.
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Structural phase transitions occur in a wide range of
systems [1]. Studies of structural phase transitions are
both of technological importance and of fundamental in-
terest. Technologically, an understanding of structural
phase transitions is essential to the study of many materi-
als, while fundamentally they are related to a variety of
questions in statistical mechanics, crystallography, magne-
tism, and surface science, to name a few. Among the most
intensively studied systems related to structural phase tran-
sitions are graphite intercalation compounds, niobates,
adsorbed molecular monolayers and vortex matter in
type-II superconductors. In this Letter, we introduce a
new system of study, that of vortex matter created in a
trapped Bose-Einstein condensate (BEC) formed in the
presence of a corotating optical lattice (OL). This system
has the advantage of being experimentally realizable, tun-
able over a wide range of interaction parameters, and
describable by an ab initio theory.

We take inspiration from two recent developments in
atomic BECs. The first is the observation of vortex-lattice
excitations in rapidly rotating BECs [2]. The second is the
set of proposals and demonstrations concerning periodic
optical lattice potentials created using holographic phase
plates [3] or amplitude masks [4]. This latter technique
means that a rotating OL (at a desired angular frequency)
can be realized by simply rotating the OL phase plate or
mask. The amenability of BECs to imaging, experimental
control, and theoretical description makes the atomic con-
densate an attractive test bed for many phenomena fre-
quently encountered but often difficult to study in other
systems. One such example is given by the recent spec-
tacular realization of the superfluid-Mott insulator quan-
tum phase transition in a condensate confined by an optical
lattice [5] following a proposal of Jaksch et al. [6]. This
transition was theoretically predicted over a decade ago [7]
in the context of liquid “He absorbed in porous media but
has eluded direct observation.

In our system, the phase transition is observed as a shift
in geometry of the vortex lattice as optical parameters are
tuned. This situation is analogous to that of type-II super-
conductors subject to external magnetic field and artificial
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periodic pinning [8§—10]. In the analogy, the angular rota-
tion ) of the BEC and the peaks of the OL play the role of
the magnetic field and the pinning centers, respectively. In
contrast to the pinning lattice in typical superconducting
samples, the periodicity and depth of the optical lattice
may be dynamically tuned in an atomic system. Further-
more, the clean microscopic physics of atomic BECs
makes a first-principles calculation possible based on a
mean-field treatment. This is in contrast to the supercon-
ductor case, where theoretical calculations frequently rely
on elegant but phenomenological models or on molecular
dynamics simulations [9].

We work in a pancake shaped geometry. For the BEC,
this is justified because at high rotation rates, the centrifu-
gal forces reduce the radial trapping frequency w | , and the
condensate may be accurately assumed to be frozen into
the harmonic oscillator ground state in the axial direction
(2). We therefore integrate the axial degree of freedom,
obtaining an effective two-dimensional system with a re-
normalized coupling constant. In a frame rotating with
angular velocity ()2, the transverse wave function ¢(x, y)
obeys the two-dimensional time-dependent Gross-
Pitaevskii equation:
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Unless otherwise specified we choose our units for time,
length, and energy as 1/w |, +/i/(mw,), and fiw |, re-
spectively. Here r> = x*> + y?, U is the (renormalized)
effective 2D nonlinear interaction coefficient, u the chemi-
cal potential, L, the z component of the angular momen-
tum operator, and Vj, = V,[sin?(kx) + sin?(ky)] the
optical lattice potential. In this work, we consider only
the case where the optical lattice is corotating with the
condensate; thus Vi, in Eq. (1) is time independent.

For each chosen value of the OL periodicity (denoted by
a = w/k), we vary the peak-to-peak potential amplitude of
the optical lattice V|, from O to V., the value at which the
lattice is fully pinned. We obtain the ground state of the
system for a given set of parameters (Vj, a, {}) by prop-
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agating Eq. (1) in imaginary time (i.e., by steepest de-
scent). To ensure that the obtained structure corresponds
to the ground state, we usually start with several different
initial trial wave functions possessing different symme-
tries. We include trial vortex lattices with both regular
structures (triangular, square, etc.) and irregular shape. In
our calculation, we use the 8’Rb parameters of the JILA
experiment [2]: w; =27 X 8.3 Hz, w, = 27 X 5.3 Hz,
Q) = 0.95w |, and the total particle number is taken to be
2 X 10°. One may be concerned that for a faster rotating
speed the vortex core size will increase and eventually
become larger than the intervortex spacing. This, however,
turns out not to be true. As predicted by Fischer and Baym
[11], and experimentally confirmed in Ref. [2], the core
size remains a limiting fraction of the intervortex spacing
evenas ) - w;.

Evidently, both the atomic and the optical parameters
affect the ground state. For simplicity, in this work we
focus on the effect resulting from variation of the OL.
Our variables are therefore the depth (V) and periodicity
(a) of the optical potential. Specifically, a defines the
density of pinning sites which occur at the peaks of the
OL potential, whereas () determines the density of vorti-
ces. As found in previous studies [9], we observe that the
structure of the fully pinned vortex lattice is very sensitive
to the ratio 7 defined as » = N,,/N,,, where N,, and N, are
the density of vortices and pinning sites, respectively. For
the OL potential we use here, N = 1/ a?. In the absence of
the OL, N, = 2/(x/3€?), where € = [277/(x/30)]"/2 is the
intervortex spacing in a completely unpinned (V, = 0)
vortex lattice [12]. This value of N, is not significantly
changed by the presence of the OL. Hence we take 1 =
2a%/(/3€?). In brief, we find that when 7 = 1/2 the fully
pinned vortex lattice has a checkerboard structure and that
when 1 = 1 we obtain a square lattice, while when n = 2
we obtain a square lattice of doubly charged vortices. We

remark that, although these results are similar to those
obtained in the study of superconductors, this case is by
no means obviously a priori. This is because the super-
conductor system is essentially homogeneous and pos-
sesses a healing length orders of magnitude smaller than
the intervortex spacing, while the atomic system has a
finite size due to the confining harmonic potential and
the condensate healing length is typically a significant
fraction of the intervortex spacing. As a result, the inter-
vortex interaction in the former case can be accurately
modeled by a two-body logarithmic repulsive potential,
while that in the latter may have a many-body character
[13]. In fact, it is possible in the atomic system to tune the
parameters from the two-body to the many-body regime
and investigate the physical behaviors in different regimes.

The trends in our results are graphically illustrated in
Fig. 1, our main result. For three values of a the ground
state vortex structure is plotted for increasing values of V.
The upper, middle, and lower rows correspond to different
pinning site densities represented by n = 2, 1.15, and 0.5,
respectively. In the absence of the OL, the angular mo-
mentum of the condensate is carried in singly quantized
vortices which organize into a triangular Abrikosov lattice.
Such vortex lattices have been observed [14], perturbed
[2], and accurately described [15] by several groups in
recent years.

Not surprisingly, for sufficiently small V, the vortex
lattice maintains a triangular geometry with only slight
distortions (see first column of Fig. 1). In the opposite
extreme, at sufficiently large values of V, all the vortices
are pinned to the antinodes of the OL potential, mirroring
the geometry set by the OL potential. What is remarkable
are the states that exist between these extremes. At a =
4€/3 (upper row of Fig. 1), there are about twice as many
vortices as pinning sites (n = 2), and the fully pinned
vortex lattice is found to be a square lattice of doubly
quantized vortices which is commensurate with the OL, a
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situation analogous to the second matching field case for
the superconductor system in which the observation of
a square double-quanta vortex lattice was reported in
Ref. [10]. At a higher pinning site density defined by
a = € (middle row of Fig. 1, n = 1.15), most of the
antinodes of the OL are occupied by singly quantized
vortices, with the exception of three doubly quantized
vortices. And finally, at @ = 2€/3 (lower row of Fig. 1,
1 = 1/2), every next-nearest-neighbor site of the OL is
occupied by a singly quantized vortex, and the fully pinned
vortex lattice forms what can be described as a “checker-
board” square lattice rotated 45° with respect to the OL,
once again analogous to the half matching field case of the
superconductor system [9].

For intermediate values of V), the vortices form struc-
tures in between the triangular lattice and the fully pinned
vortex lattice, the details of which also depend on the
period of the OL. For example, at a = 4€/3, for which
the fully pinned vortex lattice is a square lattice of doubly
charged vortices, we observe bound pairs centered around
the OL pinning sites for the potential depth in the range
0.5 <V, <4.0. We point out that the orientation of each
pair is orthogonal to all adjacent ones. As V| increases,
these pairs are more and more tightly bound and eventually
all pairs collapse onto the corresponding pinning sites, thus
forming doubly quantized vortices. Further increasing the
OL period, vortices with higher and higher winding num-
ber will start to appear in the fully pinned vortex lattice. A
single doubly charged vortex was recently observed in
atomic condensate and was found to be dynamically un-
stable [16]. We hope our study here may stimulate more
experimental work on multiply charged vortices.

In order to characterize the structural phase transition
more quantitatively, we calculate the structure factor [9] of
the vortex lattice defined as

1 .
— ik-r;
S(k) = N, E,- n;e™™m, 2)

where i labels individual vortices, and n; and r; are the
winding number and position of the ith vortex, while N, is
the total winding number. For a familiar crystal lattice,
|S(k)| displays peaks at the corresponding reciprocal lat-
tice vectors. Here, we focus on following three cases: the
triangular Abrikosov lattice in the absence of the OL (S7)
and the square (Sg) and the checkerboard (Sc) lattices
defined by the OL. Each lattice structure has two funda-
mental reciprocal vectors. In this instance it is sufficient to
calculate the structure factor along one dimension, i.e., for
one of the reciprocal vectors. Our results are displayed in
Fig. 2. We observe that as Vj is increased from zero, the
triangular lattice is destroyed over a very small range of V|,
as St exhibits a sudden jump, indicative of a first order
transition which is physically expressed by the motion of
vortices towards the pinning sites. When there are more
vortices than pinning sites (1 > 1), the surplus vortices get
pinned at a comparatively “slow” pace as a consequence
of repulsion experienced from vortices which are already

0.8
04

0.0

0.8
04|

0.0

Structure Factor

0.8

04

0.0

Vo

FIG. 2. Structure factors as functions of V|, for a = 4€/3, e,
and 25/3 ST,S,C = |S(k7‘)s)c)|, where kT,S,C = (27T/€))’(\f -
[27/(\/3€)]9, 2k$ and k% — k$, representing, respectively, one
of the two fundamental reciprocal vectors for the triangular,
square, and checkerboard lattices.

pinned. Conversely, when the number of pinning sites
exceeds that of vortices (n < 1), the fully pinned vortex
lattice is quickly established.

We now turn to explore the structure of the fully pinned
vortex lattice for various values of 7. In the case where 7 is
not close to an integer or inverse integer value, we observe
the coexistence of sublattices of different geometry
bounded by domain walls which always lie along the
diagonal of the OL. For n = 1.8 we have the coexistence
of two sublattices formed by doubly and singly quantized
vortices, respectively [see Fig. 3(a)]. For this fully pinned
vortex lattice, the domains have striped parallel walls
(represented by the solid lines in the figure), indicating
interdomain repulsion [17,18]. This can be understood as a
consequence of the repulsive vortex-vortex interaction. For
the slightly smaller value of n = 1.6, these two sublattices
form two interlocking checkerboard structures [see
Fig. 3(b)]. As a decreases further to 0.95€ [Fig. 3(c)], all
doubly quantized vortices have disappeared and the vortex
lattice becomes completely commensurate with the OL,
with each pinning site hosting a singly quantized vortex.
This represents the fully matching case of n = 1. Upon
further decrease of a or 7, Figs. 3(d) and 3(e) show that
more pinning sites become unoccupied and the checker-
board domain begins to cover the whole lattice. In this
ground state, the walls between the square and checker-
board domains are crossing each other, signifying an at-
tractive domain wall interaction which may be intuitively
understood as resulting from the tendency of the vortices to
occupy the vacant pinning sites.

In the study of domain wall formation, we see again
distinct advantages of BEC vortex lattices over alternative
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FIG. 3.

represent domain walls. (f) Phase diagram of the pinned vortex lattice.

systems. Although similar domain formation was observed
earlier in superconducting systems [10,19], their origin
could not be clearly established because of additional
defects likely to be present in the experimental samples.
By contrast, in the atomic BEC system, the OL provides us
with a defect-free periodic pinning potential and thus frees
us to confidently investigate the more fundamental factors
controlling the dynamics of domain formation and hence
the structure of the domain walls. Recent success at di-
rectly imaging [2] and calculating [15] vortex-lattice ex-
citations in BECs presents very exciting possibilities for
studying, in unprecedented detail, the dynamics of the
pinned vortex lattices obtained in this work and opens
the door to more ambitious studies of structural phase
transitions in unconventional geometries. Finally, we
present in Fig. 3(f) a vortex-lattice phase diagram based
on the structure factors. We call the lattice structure ‘‘tri-
angular lattice” if S7 > 0.5, and “fully pinned lattice” if
Sg > 0.5. Otherwise, it is termed as “intermediate.” For
n <1, there is a very small intermediate regime which
quickly grows as 1 exceeds unity.

In summary, we have theoretically investigated the vor-
tex state of a rapidly rotating condensate in a periodic
optical potential. We have found that the vortex lattice
exhibits a rich variety of structures depending on the
parameters of the optical potential. In the future it will be
interesting to investigate the detailed dynamics (e.g., time
evolution) of the phase transitions between various struc-
tures and to relate the transitions to the properties of the
condensate such as its collective excitation modes. Such
studies will certainly shed new light on many other systems
displaying structural phase transitions. Another problem to
study concerns the situation when the OL becomes so
strong that the condensate reaches the Mott insulator re-
gime, as discussed recently by Wu et al. [20].
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Note added.—During the preparation of the Letter, we
noticed the work of Reijnders and Duine [21] who studied
some aspects of this system using a variational approach.
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(a)—(e) Structures of the fully pinned vortex lattice. From left to right, n = 1.8, 1.6, 1.0, 0.8, and 0.6, respectively. Solid lines
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