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For most technical networks, the interplay of dynamics, traffic, and topology is assumed crucial to their
evolution. In this Letter, we propose a traffic-driven evolution model of weighted technological networks.
By introducing a general strength-coupling mechanism under which the traffic and topology mutually
interact, the model gives power-law distributions of degree, weight, and strength, as confirmed in many
real networks. Particularly, depending on a parameter W that controls the total weight growth of the
system, the nontrivial clustering coefficient C, degree assortativity coefficient r, and degree-strength

correlation are all consistent with empirical evidence.
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The past few years have witnessed a great devotion by
physicists to understand and characterize the underlying
mechanisms of complex networks including the Internet
[1], the World Wide Web [2], the scientific collaboration
networks [3,4] and world-wide airport networks (WAN)
[5,6]. So far, research on networks has mainly focused on
unweighted graphs. Barabasi and Albert have proposed a
well-known model (the BA model) that introduces the
degree preferential attachment mechanism to mimic un-
weighted growing networks [7]. Most recently, the avail-
ability of more complete empirical data has allowed
scientists to consider the variation of the weights of links
that reflect the physical characteristics of many real net-
works. Obviously, there is a need for a modeling approach
to complex networks that goes beyond the purely topologi-
cal point of view. Barrat, Barthélemy, and Vespignani
(BBV) presented a model that integrates the topology
and weight dynamical evolution to study the growth of
weighted networks [8]. Their model yields scale-free prop-
erties of the degree, weight, and strength distributions,
controlled by an introduced parameter 6. However, its
weight dynamical evolution is triggered only by newly
added vertices, resulting in few satisfying interpretations
to the collaboration networks or the airport systems. In
fact, the dynamics and properties of social and technologi-
cal networks are quite different and should be addressed
individually. It is well-known that networks are not only
specified by their topology but also by the dynamics of
weight (e.g., information flow) taking place along the links.
For instance, the heterogeneity in the intensity of connec-
tions may be very important in understanding technologi-
cal systems. The amount of traffic characterizing the con-
nections of communication systems or large transport in-
frastructure is fundamental for a full description of these
networks [9]. Take the WAN for example: each given edge
weight w;; (traffic) is the number of available seats on di-
rect flight connections between airports i and j. Weighted
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networks are often described by an adjacency matrix w;;
which represents the weight on the edge connecting verti-
cesiand j,withi, j = 1,..., N, where N is the size of the
network. We will consider only undirected graphs, where
the weights are symmetric (w;; = w;;). As confirmed by
measurements, complex networks often exhibit a scale-
free degree distribution P(k) ~ k™7 with 2=y =3
[5,6]. The weight distribution P(w) that any given edge
has weight w is another significant characterization of
weighted networks, and it is found to be heavy tailed,
spanning several orders of magnitude [10]. A natural gen-
eralization of connectivity in the case of weighted net-
works is the vertex strength described as s; = E(iep(i)wij,
where the sum runs over the set I'(i) of neighbors of node i.
The strength of a vertex integrates the information about its
connectivity and the weights of its links. For instance, the
strength in WAN provides the actual traffic going through a
vertex and is an obvious measure of the size and impor-
tance of each airport. Empirical evidence indicates that in
most cases the strength distribution has a fat tail [6], similar
to the power law of degree distribution. Highly correlated
with the degree, the strength usually displays the scale-free
property s ~ kB [11,12].

The previous models of complex networks always in-
corporate the (degree or strength) preferential attachment
mechanism, which may result in scale-free properties.
Essentially, this mechanism just describes interactions be-
tween the newly added node and the old ones. Actually,
such interactions also exist between old nodes. Perhaps, the
most reasonable and simplest way to express such inter-
actions is by the product form of related vertex strengths,
i.e., the pairwise interaction between vertices i and j is
proportional to s;5; (strength-coupling form). Let us review
the BA model: a new vertex n is added with m edges that
are randomly attached to an existing vertex i according to
the degree preferential probability, which can be written in
the product form of degrees

© 2005 The American Physical Society



PRL 94, 188702 (2005)

PHYSICAL REVIEW LETTERS

week ending
13 MAY 2005

[1BA — i

n—i ij
J

kyk; 1

<M

Analogously, in BBV networks one can rewrite the
strength preferential probability:
S SpS;
O, =i =" 2
n—1i ZSI ansj ( )
j

We argue that such interactions (actually driven by traffic)
exist between old vertices in the same way, and will con-
siderably affect the flows between them: First, new edges
should be allowed to add between old nodes; second, the
preexisting traffic flows along the links will be updated
with the growth of networks. Indeed, the physical interac-
tion of nodes plays a crucial role in determining the net-
work topology during its dynamical evolution. Our above
perspectives have been partly inspired by the work of
Dorogovtsev and Mendes (DM) [13], who proposed a class
of undirected and unweighted models where new edges are
added between old sites (internal edges) and existing edges
can be removed (edge removal).

In the Letter, we present a model for weighted techno-
logical networks that considers the topological evolution
under the general traffic-driven interactions of vertices. It
can mimic the reinforcement of internal connections and
the evolution of many infrastructure networks. The diver-
sity of scale-free characteristics, the nontrivial clustering
coefficient, the assortativity coefficient, and the strength-
degree correlation that have been empirically observed can
be well explained by our microscopic mechanisms.
Moreover, in contrast with previous models where weights
are assigned statically [14,15] or rearranged locally (the
BBYV model), we allow the flows to be widely updated.

The model starts from an initial configuration of N,
vertices connected by links with assigned weight w,. The
model is defined on two coupled mechanisms: the
strengths’ dynamics and the topological growth (see
Fig. 1).

Strengths’ dynamics.—From the beginning of the evo-
lution, all the possible (existing or not) connections at each
time step are supposed to update their weights according to
the strength-coupling mechanism:

W — w;; + 1, with probability Wp;;, 3
! Wij» with probability 1 — Wp;;,
where
S[Sj
= 4
pU Z SaSh ( )
a<b

integrates the strength coupling of vertices i and j, and
determines the increment probability of weight w;; (if i and
J are unconnected, w;; = 0). The total weight of the edges
in a statistical sense is modified by the amount

(i< Aw;;) = W, which is assumed constant for simplic-
ity. This parameter reflects the growing speed of the net-
work’s total traffic load, for instance, the increasing rate of
total information flow in a communication system. The
always growing traffic plays the driving role in network
evolution. One may notice that Wp;; is very likely to
exceed one if the initial number of nodes N is small.
When Wp;; exceeds one, it is automatically assumed to
be one. This treatment of Wp;; will probably affect the
initial network evolution, while it is not significant for
discussing the statistical measures, as they are almost
independent of initial states.

Topological growth.—At the same time step, a new
vertex n is then added with m edges that are randomly
attached to an existing vertex i according to the strength
preferential probability II,_,; [Eq. (2)]. The weight of each
new edge is also fixed to wy. In fact, the strength prefer-
ential attachment is essentially the same with the mecha-
nism traffic-driven interactions we have argued.

The network provides the substrate on which numerous
dynamical processes occur. In previous models, traffic was
often assumed just as an appendix to the network structure.
Actually, traffic and the underlying topology are mutually
correlated, and it is very important to define appropriate
quantities and measures capable of capturing how all these
ingredients participate in the formation of complex net-
works [9]. Technology networks provide a large empirical
database that simultaneously captures the topology and the
dynamics taking place on it. For the Internet, the informa-
tion traffic between routers (nodes) can be represented by
the corresponding edge weight. The total traffic that each
router deals with can be denoted by the node strength,
which also represents the importance of given router. The
increasing information flow as an internal demand always
spurs the expansion of technological networks. Specifi-
cally, the largest contribution to the growth is given by
the emergence of links between already existing nodes.
This clearly points out that the Internet growth is strongly
driven by the need of a redundancy wiring and an increas-
ing need of available bandwidth for data transmission [12].
On one end, newly built links (between existing routers)
are supposed to preferentially connect high strength
routers, because otherwise it would lead to the unnecessary
traffic congestion along indirect paths that connect those
high strength nodes. Naturally, traffic along existing links
between high strength routers, in general, increases faster
than that between low strength routers. All the points are
reflected in our strength-coupling mechanism. On the other
end, new routers preferentially connect to routers with
larger bandwidth and traffic handling capabilities (the
strength driven attachment). Those phenomena also exist
in an airport system, a power grid, and a railroad network,
and they could be explained by the traffic-driven mecha-
nism of our model. For a power grid and a railroad net-
work, the cost by distance has a distinct effect to their

188702-2



PRL 94, 188702 (2005) PHYSICAL

REVIEW LETTERS

week ending
13 MAY 2005

@ 1O
ST O

W, =W A

FIG. 1. Illustration of the evolution dynamics. A new node n
connects to a node i with probability proportional to s;/ 2_,-sj.
The thickness of nodes and links, respectively, represents the
magnitude of the strength and weight. New connections (dashed
lines) can be built between preexisting nodes, and the bilateral
links represent the traffic growing process along links under the
general mechanism of strength couplings.

topological properties. Their degree distributions, for ex-
ample, are not scale-free. In a word, topology and traffic
interact with each other in networks under general inter-
actions of vertices driven by the internal increasing traffic
demand.

The model time is measured with respect to the number
of nodes added to the graph, i.e., t = N — N, and the
natural time scale of the model dynamics is the network
size N. In response to the demand of increasing traffic, the
system must expand. With a certain size, one technological
network assumably has a certain ability to handle a certain
traffic load. Therefore, it could be reasonable to suppose
that the total weight on the networks increases synchro-
nously by the natural time scale. This is why we assume W
as a constant. This assumption also bring us the conve-
nience of analytical discussion. Using the continuous ap-
proximation, we can treat k, w, s, and the time ¢ as
continuous variables [1,7]. Then Eq. (3) indicates

dwij _ ZWSiSj _ 2WSl‘Sj (5)
dt Z SaSh Zsa Z Sp .
a,b(a#b) a  b(#a)

The strength s; of vertex i can increase if either a newly
added node connects to i by the topological growth dy-
namics or any possible (existing or not) connections to i are
updated by the strengths’ dynamics:

> 2Ws;s;
ds; ) i n ms; _ 2W +m S; ©)
dt Ssa Y s, s 2WH+2m t’

a  b(+#a) 1

where the last expressions are recovered by noticing that
3;s5:() = 2(m + W)t. From Eq. (6), one can analytically
obtain the power-law distribution of strength P(s) ~ s~ ¢
with the exponent [7,8]: @ =2+ m/(m + 2W). Obvi-
ously, when W = 0, the model is topologically equivalent
to the BA network and the value o = 3 is recovered. For

FIG. 2 (color online). (a) Probability distribution P(s). Data
are consistent with a power-law behavior s~ ¢. In the inset, we
give the value of a obtained by data fitting (solid circles),
together with the analytical expression a = 2 + m/(m + 2W)
(line). The data are averaged over 20 networks of size N = 5000.
(b) Strength s; versus k; for different W (log-log scale). Linear
data fitting gives slopes 1.04, 1.17, 1.25, and 1.30 (from bottom
to top), demonstrating the correlation of s ~ k.

larger values of W, the distribution is gradually broader
with & — 2 when W — oo,

We performed numerical simulations of networks gen-
erated by choosing different values of W and fixing Ny =
3, m = 3, and wy = 1. We have checked that the scale-free
properties of our model networks are almost independent
of the initial conditions. Numerical simulations are con-
sistent with our theoretical predictions, verifying again the
reliability of our present results. Figure 2(a) gives the
probability distribution P(s) ~ s%, which is in good agree-
ment with the theoretical predictions. We also report the
average strength s; of vertices with degree k;, which dis-
plays a nontrivial power-law behavior s ~ k# as confirmed
by empirical measurement. Unlike BBV networks (where
B = 1), the exponent 8 here varies with the parameter W
in a nontrivial way, as shown in Fig. 2(b). Moreover, the
major difference between our model and the DM network
is reflected in the strength-degree correlation graph.
Although the DM model allows the emergence of internal
edges, it could not mimic the reinforcement of preexisting
connections in that it is unweighted. The nontrivial s ~ k?
correlation demonstrates the significant part of weight
increment along existing edges, and thus implies that our
model is reasonable in the light of traffic flow. More
importantly, one could check the scale-free property of
degree distribution P(k) ~ k=7 by combining s~ kP
with P(s) ~ s~¢. Considering P(k)dk = P(s)ds, the expo-
nent 7y is easily calculated: y = B(a — 1) + 1. The scale-
free properties of weight and degree obtained from simu-
lations are presented in Figs. 3(a) and 3(b). Finally, it is
worth remarking that, for the BA networks, the clustering
coefficient is nearly zero, far from the practical nets that
exhibit a variety of small-world properties. In the present
model, however, the clustering coefficient C is found to be
a function of W [Fig. 4(a)], also supported by empirical
data of a broad range.
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FIG. 3 (color online). (a) Probability distribution of the de-
grees P(k) ~ k~7. (b) Probability distribution of the weights
P(w) ~w™". The data are averaged over 20 networks of size
N = 5000.

In the social networks, connections between people may
be assortative by language or by race. Mixing can also be
disassortative, i.e., vertices in the network preferentially
form connections to others unlike them. Newman proposed
some simple measures for these types of mixing, which we
call assortativity coefficients [16]. In the case of mixing by
vertex degree, a remarkable pattern emerges. Almost all
the social networks studied show positive assortativity
coefficients, while all others, including technological and
biological networks, show negative coefficients. It is not
clear if this is a universal property; the origin of this
difference is not understood either. In our views, it repre-
sents a feature that should be addressed in each network
individually. We argue that the adaptive evolution of to-
pology in response to the increasing traffic is the major
cause of disassortative mixing of technological networks.
Using the formula defined by Eq. (26) of Ref. [16], we
calculate the degree assortativity coefficient (or degree-
degree correlation) r of the graphs generated by our model.
Simulations given in Fig. 4(b) are supported by empirical
measurements [16]. The restriction of our model to tech-
nological networks is because there are few empirical data
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FIG. 4 (color online). (a) Clustering coefficient C depending
on the parameter W. In the inset, we report the evolution of
clustering coefficient (or C versus N) which converges soon.
(b) Degree-degree correlation r depending on W. In the inset, we
report its evolution which converges soon.

for statistical analysis on “weighted”” biological networks,
where many interacting mechanisms are far from present
knowledge as well. Hopefully, our model will be very
beneficial for future understanding or characterizing bio-
logical networks and social ones, as it generates many
topological properties observed in those real networks.
Because of its apparent simplicity and the variety of con-
trollable results, we believe that some of its extensions will
probably help address the other two classes of networks.

In conclusion, the universal interactions of nodes and the
internal traffic demands of the system will determine the
topology evolution of technological networks. This gen-
eral, traffic-driven mechanism provides a wide variety of
scale-free behaviors, clustering coefficients, and nontrivial
correlations, depending on the parameter W that governs
the total weight growth. All the results are supported by
empirical data. Therefore, our present model, for all prac-
tical purposes, will demonstrate its applications in future
weighted network research.
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