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Suppress Winfree Turbulence by Local Forcing Excitable Systems
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The occurrence of Winfree turbulence is currently regarded as one of the principal mechanisms
underlying cardiac fibrillation. We develop a local stimulation method that suppresses Winfree turbulence
in three-dimensional excitable media. We find that Winfree turbulence can be effectively suppressed by
locally injecting periodic signals to only a very small subset (around some surface region) of total space
sites. Our method for the first time demonstrates the effectiveness of local low-amplitude periodic
excitations in suppressing turbulence in 3D excitable media and has fundamental improvements in
efficiency, convenience, and turbulence suppression speed compared with previous strategies.
Therefore, it has great potential for developing into a practical low-amplitude defibrillation approach.
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The problems of pattern formation and transition (in-
cluding both ordered and turbulent patterns) are central to
nonlinear science concerning extended systems. Different
patterns represent different functions and properties in
realistic systems. Some patterns are beneficial and others
harmful. Therefore, the topic of pattern and turbulence
control for realizing wanted patterns and avoiding undesir-
able ones is of broad interest in practical applications.
Cardiac systems are typical excitable extended systems
and support various patterns including rest patterns, scroll
wave patterns, and turbulent patterns [1,2]. Transitions
from scroll wave patterns to turbulence (due to spiral
wave breakup or scroll wave filament expansion) may
induce ventricular fibrillation leading to serious cardiac
disease, even to sudden cardiac death [3–8]. Therefore,
the problem of scroll wave and turbulence suppression to
return the excitable media to a stable rest state is highly
relevant to cardiac defibrillation [2].

The only clinical method currently accepted in perform-
ing cardiac defibrillation is to apply a large shock to body
surface or directly to cardiac muscle [9,10]. These large-
amplitude shocks may damage the cardiac tissue and cause
serious pains [11]. Therefore, in both nonlinear science and
cardiac physiology fields there is a growing experimental
and theoretical effort to develop low-amplitude defibrilla-
tion methods. However, most of the theoretical works
regarding defibrillation of cardiac systems have considered
only two-dimensional (2D) systems (or few coupled 2D
systems layered together) [12–14], while real ventricles
are clearly 3D objects. Global controls in 3D media have
been investigated [15,16]. In particular, in [15] the authors
have performed suppression of Winfree turbulence by
applying global periodic forcing [17]. The difficulty of
injecting an external signal into the whole 3D space sites
restricts the practical utilization of this global method. A
number of previous experiments have explored the use of
local-low-amplitude and high-frequency pacing as an al-
ternative defibrillation technique [18]. However, in these
05=94(18)=188301(4)$23.00 18830
experiments, the pacing had only a local effect, resulting in
only small areas of organized electrical activity. Once the
pacing was suspended, the local region of capture was
reinvaded by surrounding electrical activity, and the tissue
remains in a state of fibrillation. Calcium channel blocking
with a drug has been suggested to improve the effect of
local pacing [19]. Nevertheless, how to use local-low-
amplitude pacing for globally defibrillating cardiac tissue
remains still an unsolved problem.

In the last decade, many local and global control meth-
ods, including both feedback [20–23] and nonfeedback
[24–26] methods, have been developed for taming chaotic
extended systems. Most of the works on spatiotemporal
chaos suppression have been restricted in 1D or 2D spatial
systems. In this work we propose for the first time to
suppress scroll waves and turbulence in 3D excitable me-
dia by applying local and periodic excitations and focus on
optimizing turbulence suppression in terms of efficiency,
convenience, and rapidity.

We use the general Barkley model, a simplified mono-
domain model, to describe the electrical activities of car-
diac tissue [27].
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where " is the ratio of the time scale of the activator u (the
voltages of cardiac cell membrane) over that of the inhibi-
tor v (the transmembrane currents). Spiral waves of the 2D
Barkley model cannot break up to turbulence. On the other
hand, in 3D space this model can support scroll waves
which can develop to Winfree turbulence with certain
parameter combination due to negative-tension instability
of vortex filaments [15,28]. Figure 1 demonstrates our
attempts in suppressing such turbulence through various
local stimulations. An example of Winfree turbulence of
the Barkley model is shown in Fig. 1(a), where turbulence
formation through the mechanism of filament expansion
and stretching is clearly shown (please refer to Fig. 2 of
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FIG. 1 (color online). (a) Winfree turbulence of the excitable
Barkley model. Thin lines show filaments of rotating scroll
waves. a � 1:1, b0 � 0:19, and " � 0:02 (these parameters
are used in Table I and also in Figs. 2 and 3), at which the
rotation frequency of spiral waves is !0 � 1:19. A 3D 60�
60� 60 cube is considered with space discretization of 150�
150� 150 sites in numerical simulations. (b)–(d) Asymptotic
states after applying b�t� � b0 � bf cos�!t� with bf � 0:75,
! � 1:6 in the controlled sites. (b) A small 6� 6� 6 cube
around the center of the back surface is injected. (c) A 1� 6�
150 strip in the middle line of the back surface is injected.
(d) The 1� 150� 150 back surface plane is stimulated. (e) The
variations of the filament lengths L vs time t. Here all local
injections are applied at time t � 240, corresponding to the
Winfree turbulence of state (a). Curve A: without injection,
curve B: local injections on the cube of (b), curve C: local
stimulation on the surface strip of (c), and curve D: local
stimulation on the surface plane of (d). (f) Same as (e) except
for using bf � 0:61 for the cube injection and bf � 0:69 for the
surface plane injection.
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[15] for a detailed description). In order to suppress the
turbulence, previous work [15] applied global excitation to
the system by replacing parameter b � b0 � 0:19 with
weak periodic modulation

b�t� � b0 � bf cos�!t� (2)

and applying the external signal bf cos�!t� to all discreti-
zation sites. The key strategy of our local periodic forcing
is to apply periodic signals to only a small number of sites
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while leaving most of the sites untouched. The idea is that
these local forcings may stimulate some desirable ordered
waves first in the injected area, which may propagate in the
excitable medium, and then suppress turbulent waves and
complex filaments. We apply the periodic signal
bf cos�!t�, bf � 0:75 to a small cube [6� 6� 6 sites,
Fig. 1(b)], a surface strip [1� 6� 150, Fig. 1(c)], and a
surface plane [1� 150� 150, Fig. 1(d)], respectively. It is
found that local signals stimulate spherical target waves
[1(b)], cylindrical target waves [1(c)], or planar waves
[1(d)] and successfully suppress turbulence and scroll
waves. These local injections of Fig. 1 are low-amplitude
stimuli with the amplitude (bf � 0:75) in the same order of
the variables u and v.

Comparing the results of the global excitation in [15]
with those of the present local stimulations, the latter
methods show a number of advantages. First, the global
method needs to inject the external signal to all space sites,
and this is inconvenient in many practical situations (e.g., it
is difficult to apply electrical impulses to a large area of
interior cardiac body). On the contrary, it is much more
convenient for our methods to inject signals to partial areas
around the surface of the system. Second, the turbulence
suppression speed of various local stimulations described
in Fig. 1 are 10 times faster than that of the global one in
[15]. In Fig. 1(e) we plot the time variations of the total
filament lengths L without stimulation and with cubic,
surface strip, and surface plane local injections, respec-
tively. The local excitations can reduce filament length to
zero for 20–30 rotation periods of the original scroll waves
while it takes more than 300 periods for the global forcings
to shrink the filament length to close to zero [see Fig. 2(i)
of [15] ].

For local methods it is crucial to enhance the control
efficiency, e.g., to achieve successful turbulence suppres-
sion with total power of the injected signals as small as
possible. Assuming the total injected power proportional to
M � b2f with M being the number of the injected sites, we
find that the cubic stimulation obviously provides the high-
est efficiency. In order to reduce filament length to zero
with a similar speed, the cubic injection requires signal
power that is 2 orders of magnitude lower than that of the
surface plane stimulation. The results of Fig. 1(f) are even
more striking, where while the 6� 6� 6 cubic stimulation
can successfully suppress turbulence at the stimulation
amplitude bf � 0:61, the 1� 150� 150 surface plane
stimulation fails at considerably larger amplitude bf �
0:69. The reason for this surprising phenomenon can be
understood as follows. It is generally accepted that planar
wavefronts can travel faster than convex wave fronts with
significant positive curvature [19,29]. However, in order to
annihilate turbulence by local excitations, it requires not
only fast propagation of wave fronts but also quick for-
mation of a complete seed wave front. Generation of a
large planar wave front is much more difficult than that of a
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FIG. 2. Turbulence suppression speed R � 1=T of the cubic
(n� n� n) injection plotted for different signal parameters
where T is the time needed for turbulence suppression.
(a) n � 6, bf � 0:75. R plotted vs !. (b) bf � 0:75, ! � 1:6.
R vs n. (c) ! � 1:6, n � 6, R vs bf. (d) The boundary of the
controllable region in �bf; n� plane for ! � 1:6. Controllability
is defined such that the filament length shrinks to zero at t 
 500
for the given parameters.

TABLE I. Comparison of various excitation methods. The results denoted by �’s are cited from [15].

Global (150� 150� 150) Cube area around surface (6� 6� 6) Strip surface (1� 6� 150) Plane surface (1� 150� 150)

The optimal frequency 1.2* 1.6 1.63 1.61
Excitation amplitude bf 0.03* 0.75 0.75 0.75
Number of sites injected M 4:096� 106 216 800 25 600
Total signal power Mb2f 	 3790 122 450 14 400
Time for turbulence suppression 	 1500* 120 196 120
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small spherical wave front. In our case the latter factor
turns to be crucial and this leads to the possibility that the
overall efficiency of the surface plane stimulation can be
considerably lower than that of the cubic stimulation as we
see in Figs. 1(e) and 1(f). In order to quantitatively com-
pare the efficiencies of different schemes of turbulence
suppression we present Table I which clearly shows that
the local pacing on a cube has obviously the best overall
properties with both lower power of injected signals and
fast suppression of Winfree turbulence. We therefore focus
our further effort on the detailed characterization of the
cubic stimulation method.

As shown in Fig. 2, we find that with the same Barkley
model the results of the cubic stimulation depend on forc-
ing parameters including forcing frequency, forcing ampli-
tude, and injection area. Figure 2 shows the parameter
range where local forcing can successfully suppress the
existing turbulent scroll waves. There are several charac-
teristic boundaries to this range. First, this range is re-
stricted within a frequency zone [Fig. 2(a)], and
frequencies above or below do not provide successful
turbulence suppression. The forcing frequency needs to
be higher than a threshold !0 (!0 	 1:19 is the rotation
frequency in 2D system). This is because target waves
generated by the local excitation can suppress existing
scroll waves only if its frequency is higher than that of
the latter [30]. On the other hand, there is an upper bound
to the effective forcing frequency. The target waves are
generated by the periodic signals in the presence of turbu-
lence and scroll waves. In order to effectively stimulate
target waves, the forcing frequency should not be too far
from !0 for achieving a 1:1 resonant excitation from the
existing scroll wave background. This gives rise to the
upper bound of the zone of Fig. 2(a). Second, the injection
area and the forcing amplitude need to be sufficiently large.
Our cubic stimulation fails for n 
 4 (n� n� n sites are
injected) and bf 
 0:53 [Figs. 2(b)–2(d)]. The reasons for
these conditions are clear. In order to suppress turbulence
with local forcing, the forcing amplitude needs to be larger
than a threshold to stimulate spherical target wave fronts.
In addition, the injection area needs to be larger than a
threshold so that the wave fronts generated have a curva-
ture smaller than a critical value to allow target wave
propagation [31]. Nevertheless, when n and bf are above
the thresholds the speed of turbulence annihilation is no
longer sensitive to n and bf. In other words, a further
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increase of n and bf does not effectively reduce the sup-
pression time. The thresholdlike behaviors of the local
cubic stimulation shown in Figs. 2(b)–2(d) suggest some
optimal parameter combination to achieve high control
efficiency (e.g., n � 6, bf � 0:7). This optimization al-
lows fast turbulence suppression with low signal power,
meaning fast curing with low electrical power application
and low cardiac tissue disturbance during defibrillation.

Figure 3 demonstrates the mechanism of suppression of
Winfree turbulence by local cubic stimulation. The local
excitation on a small cube stimulates spherical target wave
fronts, which invade the turbulent surrounding and sup-
press turbulence by pushing the filaments of the scroll
waves out of the excitable medium during their propaga-
tion [Figs. 3(a)–3(d). In Figs. 3(e) and 3(f) we show how
the ordered waves wipe out the remaining filaments and
drive the system to the desirable rest state, after lifting the
periodic forcing at the turbulent state of Fig. 3(c).

In conclusion, we have developed an effective local
periodic forcing method for eliminating Winfree turbu-
lence in 3D excitable media and revealed its desirable
advantages of efficiency, convenience, and rapidity.
1-3



FIG. 3 (color online). (a)–(d) Demonstration of the mecha-
nism of the local cubic injection of Fig. 1(b). Local periodic
forcings generate spherical target waves near the injected area,
which then propagate in the space and push turbulence and all
scroll wave filaments out of the excitable medium. (e),(f) The
evolution of the medium after the injection signals are lifted at
t � 331 [i.e., from state (c)]. The system approaches the desir-
able rest state without the external forcing, and complete black
(indicating the desirable rest state) is observed after t 	 360.
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Finally, we emphasize that the model used in this Letter is
too simple for simulating actual cardiac systems. In order
to give some useful instruction for practical cardiac defib-
rillation, further investigation taking into account more
realistic cardiac activities is needed. On the other hand,
since the simplified model catches the general feature of
excitable media, our local excitation method is expected to
be applicable for suppressing turbulence of excitable sys-
tems in wide fields, e.g., chemical reaction systems and
neural network systems besides the cardiological ones. For
instance, we have checked that our local excitation method
works in other excitable and oscillatory models, such as the
Bär equation and the Ginzburg-Landau equation.
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