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Shear Instabilities in Granular Mixtures
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Dipartimento di Scienze Fisiche, Università di Napoli ‘‘Federico II,’’ INFM-Coherentia, INFN and AMRA, Napoli, Italy
(Received 21 December 2004; published 11 May 2005)
0031-9007=
Dynamical instabilities in fluid mechanics are responsible for a variety of important common
phenomena, such as waves on the sea surface or Taylor vortices in Couette flow. In granular media
dynamical instabilities have just begun to be discovered. Here we show by means of molecular dynamics
simulation the existence of a new dynamical instability of a granular mixture under oscillating horizontal
shear, which leads to the formation of a striped pattern where the components are segregated. We
investigate the properties of such a Kelvin-Helmholtz-like instability and show how it is connected to
pattern formation in granular flow and segregation.
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A simple example of instabilities in fluid mechanics is
the Kelvin-Helmholtz instability where a flat interface
between two fluids flowing one past the other at different
velocities is unstable, explaining, for instance, why waves
on the sea surface form [1,2]. In athermal systems such as
granular mixtures, where a hydrodynamiclike theory is not
yet well established, the discovery of instabilities is a
recent achievement [3–6]. By studying the evolution of
two bands of different grains placed on a horizontally
oscillating tray [see Fig. 1(a)], we discover a new dynami-
cal instability. The instability appears as a growing wavy
interface, which, at long times, leads to a pattern of alter-
nating segregated stripes of grains, perpendicular to the
driving direction. We suggest that this type of surface shear
instability is the common mechanism for apparently differ-
ent phenomena such as wave formation found in experi-
ments on granular flow [6] and segregation processes [7] as
observed in [8–11], initially explained in terms of a ther-
modynamic driven phase separation. In our simulations we
determine the region of existence of the pattern formation–
segregation process as a function of the area fractions of
large and small grains, and we discuss the dependence of
the pattern as a function of the amplitude and frequency of
oscillation.

MD simulation model.—We perform molecular dynam-
ics (MD) simulations (also known as discrete element
methods) of a binary system of disks which lay on a tray
(i.e., in two dimensions) with periodic boundary conditions
in the x direction and hard walls in the other. Grains
interact with the tray by a viscous force proportional to
their relative velocity via a viscosity parameter � different
for the two species; when overlapping, grains interact via
2D Hertzian contact forces [12]. The simulations’ details
and parameters are chosen to model experimental condi-
tions similar to those investigated by Mullin and co-
workers [8,9,11,13].

Two grains with diameters Di and Dj in positions ri and
rj interact if overlapping, i.e., if �ij � ��Di � Dj�=2�
jri � rjj� > 0. The interaction is given by a normal Hertz
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force with viscous dissipation [14,15]. In 2D this reduces
to the linear spring-dashpot model, fn � kn�ijnij �

�nmredvnij, where kn and �n are the elastic and viscoelastic
constants, and mred � mimj=�mi � mj� is the reduced
mass. As in [13] we model the interaction with the tray
via a viscous force ft � ���v� vtray�, where vtray�t� �
2�A� sin��t�x is the velocity of the tray and v the velocity
of the disk, plus a white noise force ��t� with h��t���t0�i �
2���t � t0�, where � � 0:2 g2 cm2 s�3. The interaction
between particles and walls is elastic. We solve the equa-
tions of motion by the Verlet algorithm with a time step of
6 �s. For the grain-grain interaction, we use the value kn �
2� 105 g cm2 s�2 and �n chosen, for each kind of grains,
such that the restitution coefficient is given: e � 0:8 [14].
The two components of our mixture (named b and s) have
viscous coefficients �b � 0:28 g s�1 and �s � 0:34 g s�1.
Apart from a simple rescaling of masses and lengths,
these values are those of Ref. [13] (and have been given
in private communications), and are taken from direct
measurements on the experimental system in [8]. The
size of the tray is Lx � 320 cm, Ly � 16 cm. The quali-
tative picture we discuss does not change if these values are
changed.

Results.—We consider now a mixture of heavy grains, of
mass Mb � 1 g and area fraction �b � 0:37, and light
grains, with Ms � 0:03 g and �s � 0:41, all with the
same diameter D � 1 cm, prepared in a horizontally fully
segregated configuration [Fig. 1(a)]. The mixture is vi-
brated on a horizontal tray along the x direction with
amplitude A and frequency �. The characteristic time
scale, �b � Mb=�b and �s � Ms=�s, is different for the
two species, and they are forced to oscillate with different
amplitudes and phases, subject to an effective surface shear
periodically varying in time. One may expect configura-
tions in which the two different components form two
stripes parallel to the driving direction [see Fig. 1(a)] to
be stable, the two stripes oscillating independently with
different amplitudes and phases. Instead, the initially flat
interface between the two components is observed to
1-1  2005 The American Physical Society



FIG. 1 (color online). Evolution of a binary mixture of heavy (red–dark gray) and light (blue–light gray) grains on a horizontal tray
oscillating along the x direction with amplitude A � 1:2 cm and frequency � � 12 Hz (only a quarter of the system length is shown in
each figure). (a) The system is initially prepared in a horizontally segregated configuration with a flat interface between the two
species. Under shaking it develops a surface instability with a sinelike modulation of growing amplitude leading at long times to a state
where segregated stripes perpendicular to the driving direction appear. The upper small panels show the corresponding evolution of the
surface instability model Eqs. (1) in the presence of an oscillating shear �v�t� � 2�A� sin�2��t�. (b) The same system is now initially
prepared in a mixed state and then shaken. The formation of local fluctuations of the density of the two species (shown at t � 1:6 s)
leads to microsurfaces generating the same instability mechanism as in (a).
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evolve via the formation of a surface modulation which has
a growing amplitude. Finally, this leads to a state where
segregated stripes appear, perpendicular to the driving
direction (at variance with known results in colloidal fluids
[16]). This instability appears to be of the same kind as that
observed in two fluid systems and in liquid-sand systems
subject to horizontal oscillations under gravity, which is
responsible for the ripples observed on the shoreline [17].
In these cases, however, because of gravity there is an
energy cost associated with the growth of the interface,
which therefore gets stabilized.

When the system starts from a disordered initial state, as
shown in Fig. 1(b), the instability develops too. The forma-
tion of local fluctuations of the density of the two species
creates microsurfaces which are forced to evolve according
to the instability shown in Fig. 1(a). For instance, Fig. 1(b),
at t � 1:6 s, shows the existence of clusters of particles of
the same species elongated perpendicularly to the driving
direction. As time goes on, these clusters merge, giving rise
to the striped pattern of Fig. 1(b) (t � 80 s). It is apparent
that the originally disordered system is ordered, i.e., seg-
regated, by the dynamic instability. Figures 1(a) (t �
320 s) and 1(b) (t � 80 s) show that the wavelength of
the final steady state depends on the initial conditions.

The segregation process shown in Fig. 1(a) reproduces
that observed experimentally in [8,11]. In the present setup
the grains’ radii are equal, no ‘‘depletion’’ forces can be at
work, and no ‘‘thermodynamic’’ coarsening phenomena
can be considered responsible for this segregation process,
as initially conjectured [11] by making an analogy with
colloidal systems. Such a remark appears to be consistent
with a scenario proposed by the use of modified Navier-
Stokes equations [18]. Interestingly, segregation from a
disordered initial state to a final striped one has also been
observed in a two fluid system oscillated in the absence of
gravity [19].
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The above dynamical instabilities should manifest in the
mixture also under different shearing protocols. To check
this, we study now a different configuration where gravity
induces granular flow, and thus a differential shear on the
mixture components appears. The tray no longer oscillates,
but it is inclined at an angle � with respect to the horizontal
by rotation around the y axis. The two species of grains
attain different limit velocities (of the order of vb ’
g�b sin� and vs ’ g�s sin�, with g the gravitational accel-
eration) and thus experience a differential shear. As shown
in Fig. 2, under these conditions the initially flat interface
between the mixture components changes also via Kelvin-
Helmholtz-like instabilities. An unstable pattern forms and
curl-like structures appear. This phenomenon, induced by
surface dynamical instabilities, is very similar to those
recently discovered in experiments on granular flows [6].

The results of Figs. 1 and 2 point out the essential role of
shear induced surface instabilities in pattern formation and
the connections with segregation transitions. Even though
this is not a usual fluid, the complex nature of this phe-
nomenon can be understood via schematic hydrodynamic-
like considerations. On the two sides of the perturbed inter-
face, flux lines are narrowed and widened as the pressure
is, respectively, lowered and increased (Bernoulli law). The
pressure gradient reinforces the perturbation of the inter-
face, giving rise to positive feedback. Within such a per-
spective, the essential features of pattern formation ob-
served in the two experiments of Figs. 1 and 2 are captured
by a model originally proposed for the Kelvin-Helmholtz
instability of granular flows [6]. The model describes the
evolution of the velocity components, vX and vY , of the
system interface initially located at Y�X� � 0:

vX � �v�t� tanh�Y�; vY � c sin�kXX�; (1)

where �v�t� is the relative bulk velocity between grains far
on the two sides of the interface at time t, as kX and c are
1-2
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FIG. 3 (color online). (a) Ordering properties of the late stage
configurations of the mixture as a function of the area fractions
of the two components. The shaded area covers the region where
segregation via stripes formation occurs. Circles, large grains are
in a fluid state. Squares, large grains form a crystal. Stars, the
system appears blocked in a glassy disordered configuration (see
text). When stripes form their characteristic length scale, " is a
function of the frequency, �, and of the amplitude, A, of the
driving oscillations. This is shown, in the case �b � 0:30 and
�s � 0:28, in (b) and (c).

FIG. 2 (color online). Evolving interface in the same granular mixture as Fig. 1(a) flowing down a tray rotated at an angle � � 12�

with respect to the horizontal around the y axis. The red (dark gray) grains are faster that the blue (light gray) ones. The upper small
panels show the evolution, at corresponding times, of a Kelvin-Helmholtz-like surface dynamical instability modeled by Eqs. (1) in the
presence of a constant shear �v�t� � �v0, reproducing a pattern qualitatively similar to the one found in the main panels.
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constant parameters (we consider the same values used in
[6], i.e., kX � 5, c � 0:1, but our results are robust to
changes). The presence of a velocity gradient, �v�t�, in-
dependent from its microscopic origin (different grains
friction, different driving of the components, etc.), enhan-
ces shear and results in pattern formation. In the case of
gravity induced deformations, �v�t� � �v0 � vb � vs
can be considered to be time independent since in the
stationary regime the two limit velocities are given. In
such a case, the model essentially coincides with the one
introduced in [6] and describes well the qualitative fea-
tures of the MD simulations of Fig. 2 (see upper panels). In
the case of the vibrated horizontal tray, the relative bulk
velocity is oscillating in time, and we fix �v�t� �
2�A� sin�2��t�. This gives rise (see upper panels in
Fig. 1(a)] to a growing interface with features very close
to those observed in the simulations.

Pattern formation.—We show now under which condi-
tions pattern formations occur and explain how the prop-
erties of the final state of the mixture, such as the emerging
characteristic length scale of the stripes, ", depend on both
the dynamics control parameters and the relative concen-
tration of the two components. This gives rise to a complex
mixing or segregation diagram which we discuss in detail
here for the case of the horizontally vibrated experiment. In
order to make direct comparisons with experimental results
on segregation observed by Mullin and co-workers
[8,9,11,13], we consider now a binary mixture of large
monodisperse disks, of diameter Db � 1 cm, covering an
area fraction �b, and small polydisperse disks [20], with
average diameter Ds � 0:7 cm (with 17% polydispersity)
and area fraction �s. Masses and frictional parameters are
as given before.

The system starts from a mixed initial configuration as in
Fig. 1(b). The nature of the state reached by the system
under shaking at a late stage is crucially dependent on the
area fraction of the two species: segregation in stripes is
found only for high enough concentrations. This behavior,
in the (�b; �s) plane, is summarized in the diagram of
Fig. 3(a) showing the system ‘‘fluid’’ and ‘‘crystal’’ regions
along with their segregation properties, for � � 12 Hz and
A � 1:2 cm. Large grains are considered to be in a fluid
configuration when their radial density distribution func-
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tion, g�r�, shows a first peak at r � Db and a second one at
r � 2Db, and to be in a crystal configuration when a new
peak at r �

���

3
p

Db appears [11]. The system is in a
‘‘glassy’’ state [21] when on the longest of our observation
time scales, the system is still far from stationarity.

Figure 3(a) shows that grains at small concentrations are
mixed and in a fluid state. Segregation via stripes formation
appears at higher concentrations. At even higher concen-
trations, large grains form stripes with a crystalline order,
as smaller grains are always fluid for their polydispersity.
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Finally, at very high area fractions, the system is blocked in
its starting disordered configuration (glassy region). For
instance, by increasing �s at a fixed value of �b (say, �b ’
0:174), we observe first a transition from a mixed fluid state
to a segregated striped fluid and then a transition where the
monodisperse phase crystallizes. The experiments of [11],
where �b ’ 0:174, show the very same transitions found
here at locations differing by 10%.

In the case �b � 0:30 and �s � 0:28, where stripes
form, we describe their dependence on the dynamics con-
trol parameters in Figs. 3(b) and 3(c), showing that the
length scale, ", increases as a function of the shaking
frequency, �, and of the amplitude A. These results are to
be compared, for instance, with those found in liquid-sand
mixtures under oscillating flow, where ripples form with a
wavelength depending on the amplitude of oscillation, but
not on its frequency [22]. The dependence on � can be
schematically understood by comparison with the charac-
teristic time scales �b � Mb=�b and �s � Ms=�s of the
two species (here ��1

b � 0:28 Hz and ��1
s � 11:3 Hz): no

sensitivity to � is expected both when � � ��1
b ; ��1

s , as
grains remain almost at rest, and when � � ��1

s , as grains
oscillate with the tray. Analogously, the dependence on A
is expected to be substantial when A is at least of the order
of the mean grains separation length, l � �4�b=�D2

b �

4�s=�D2
s�

�1=2, since under this condition grains strongly
interact.

In conclusion, our simulations of a binary mixture un-
der horizontal vibrations have revealed the existence
of a new dynamical instability and shed light on the pro-
cess of size segregation under oscillatory shear and its
connections to pattern formation in granular flows.
Within such a unifying framework, we derived the ‘‘phase
diagram’’ of the mixing or segregation states of the mixture
and its corresponding transitions. Finally, such hydrodyna-
miclike processes appear to be related to those known in
thermal fluids and fluid-grain systems, ranging from
Kelvin-Helmholtz instabilities to ripple formation in
liquid-sand mixtures, even though interesting difference
are found.
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