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Fermi-Edge Resonance and Tunneling in Nonequilibrium Electron Gas
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Fermi-edge singularity changes in a nonequilibrium system, acquiring features that reflect the structure
of energy distribution. In particular, it splits into several components if the energy distribution exhibits
multiple steps. While conventional approaches, such as bosonization, fail to describe the nonequilibrium
problem, an exact solution for a generic energy distribution can be obtained with the help of the method of
functional determinants. In the case of a split Fermi distribution, the ‘‘open loop’’ part of the Greens
function possesses power law singularities. At the same time, the resulting tunneling density of states
exhibits broadened peaks centered at Fermi sublevels.
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FIG. 1 (color online). Fermi-edge resonance splitting (2) for
the two-step Fermi distribution (1), with the scattering phase
� � 0:3.
Properties of quantum systems can change drastically
when they are driven out of equilibrium. This is especially
true for transport in nanodevices [1], such as quantum dots
and quantum wires, where energy relaxation takes place
outside the device. Transport in interacting systems is often
difficult to describe by the methods developed for analyz-
ing equilibrium [2–7], which makes exact solutions out-
side equilibrium scarce and valuable.

Fermi-edge singularity [8,9] (FES) is a dramatic mani-
festation of interactions and correlations in electron liquid.
It can be observed in a resonant tunneling experiment
[10,11] as a power law resonance which peaks at the
Fermi level. Being one of the few exactly solvable prob-
lems describing transport in strongly interacting systems,
FES has been thoroughly explored in a variety of situ-
ations, including quantum wires [12–14], quantum Hall
edge states [15], and quantum dots [16]. However, apart
from recent work by Muzykantskii et al. [17] which re-
solved a long-standing controversy on orthogonality catas-
trophe in two Fermi seas [18–20], little is known about
FES out of equilibrium.

Nonequilibrium electron states with structured energy
distribution were demonstrated recently [21] using
diffusion-cooled nanoscale wires. In a wire short enough
to allow electrons diffuse out without energy relaxation a
distribution consisting of two Fermi steps,

n��� � �1� x�nF����1� � xnF����2�; (1)

with�1;2 potentials in the leads, was created, imaged using
tunneling spectroscopy, and employed to study energy
relaxation. A similar approach [22] was used to observe
splitting of a Kondo resonance in a quantum dot with a
mixture of two Fermi steps injected in one of the leads.

Here we study how the FES tunneling density of states is
modified by nonequilibrium electron distribution, and find
that it can acquire a rich and complex structure. Since FES
peaks at the Fermi level, one expects a multiple FES peak
profile for a multistep distribution of Refs. [21,22], with
each FES peak centered around a corresponding Fermi
sublevel. While the standard methods used to describe
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FES in equilibrium fail, an exact solution can be obtained
with the help of a method proposed below which allows to
extend the FES theory to generic nonequilibrium systems.

Although a variety of methods is available to treat the
FES problem, applying them outside equilibrium is often
problematic. The original approach [9], based on resum-
mation of diagrammatic series, is cumbersome and proves
difficult to generalize. Thus alternative techniques, most
notably bosonization [23], have been developed. The bo-
sonization approach, however, relies too strongly on the
assumption of thermodynamic equilibrium, and thus can-
not be used in our problem.

The method used in this article is free of such limitation.
The Greens function of a tunneling electron can be repre-
sented in terms of an appropriate functional determinant
and related quantities which are defined in a one-particle
Hilbert space. The determinant structure accounts in an
exact way for all the effects of Fermi statistics, as well as
for the interaction in the final state underpinning the FES
phenomenon. Here we employ a generalization of the
3-1  2005 The American Physical Society
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method of Ref. [17] recently used in nonseparable meso-
scopic FES problem [24], allowing one to handle an arbi-
trary energy distribution. After developing general
formalism we focus on the two-step case (1) and obtain a
split FES profile ImG��� in terms of the scattering phase
shift � (Fig. 1), where

G��� /
Z 1� n��0�

��0 ��1�
�1��0 ��2�

�2
�D��� �0� d�0 (2)

with complex �1 � 2��� ~��=�, �2 � 2 ~�=�, and

~� �
1

2i
ln�1� x� e2i�x�: (3)

The two factors in Eq. (2) correspond, as we will see, to the
well known separation [9] of FES into the ‘‘open line’’ and
‘‘closed loop’’ contributions. The closed loop factor D���
equals ���

2=�2�1� in equilibrium. We evaluate D��� below
and find that it describes broadening of nonequilibrium
FES, with � ’ x�1� x�j�1 ��2j�2=�, which can be at-
tributed to a finite effective temperature T� ’

R
n�1�

n� d�. The relation �1 � �2 � 2�=� ensures agreement
with the equilibrium FES exponent.

Turning to the analysis, the FES Hamiltonian describes
band electrons interacting with a localized state:

H �H 0N̂�H 1�1� N̂�; H 0;1�
X
pp0

ĥ�0;1�pp0 a�p ap0 ; (4)

where N̂ � b̂�b̂ describes the localized state occupation
and ĥ�0;1�pp0 � �p�pp0 � V�0;1�

p�p0 are the single-particle opera-
tors of band electrons scattering on the charged/uncharged
state potential V�0;1��r�. Tunneling from the localized state
is described by the Greens function

G��� � tr �b̂��0� ̂�0� ̂�����b̂�����̂; � > 0; (5)

where  ̂���� �
P
pu

�
pâ�p ��� creates an electron in the band

state  �r� �
P
pupe

ipr. The localized state is filled prior to
tunneling, thus the density matrix in Eq. (5) is �̂ � �̂eb̂

�b̂.
Here �̂e �

Q
p�npa

�
p ap � �1� np�apa

�
p  describes band

electrons with energy distribution np � n��p�. The latter
quantity can also be written as an exponential of a qua-
dratic many-body operator,

�̂ e �
1

Z
exp

�
�
X
p

 pâ�p âp

�
; e� p �

n��p�

1�n��p�
; (6)

with Z �
Q
p�1� e� p�. One can bring G��� to a standard

form which depends only on the band electron variables by
summing over the hole states [8,9]. This is achieved by
disentangling b and b� from Eq. (5),  ̂�����b̂���� �
e�iH � ̂�b̂eiH � � �b̂e�iH 1� �eiH 0�, and then using
the commutation relations â�p �̂e � e p�̂eâ

�
p , â�p eiH 0� �

e�i�p�eiH 0�â�p . After summing over b, b� we obtain an
expression
18680
G��� �
X
p;p0

u�p0upe
 p0e�i�p0�tr �e�iH 1�eiH 0��̂eâ

�
p0 âp: (7)

The central point of our approach is a relation between the
many-body operators in Eq. (7) and appropriate quantities
(scattering operators and energy distribution) defined in a
single-particle Hilbert space. This relation holds [25] for
any electron density matrix of the form of an exponential
of a quadratic many-body operator, such as Eq. (6).

The advantage of introducing the single-particle scatter-
ing operators in the formalism at an early stage of the
calculation is twofold. First, we bypass solution of the
single-particle scattering problem which requires resum-
mation of diagrammatic series [9] for band electron in the
presence of a time-dependent scattering. Second, we shall
be able to construct a nonperturbative solution applicable
to an arbitrary energy distribution.

We recall that Ref. [9] treats FES by solving the Dyson
integral equation using a decomposition of quantities into
analytic and antianalytic functions of complex time vari-
able, made possible by breaking the Hilbert space into the
positive and negative frequency components. This ap-
proach arises naturally in the equilibrium problem with a
pure step n��� but fails for a generic distribution. Below we
develop a proper replacement of this scheme.

The discussion in the following two paragraphs closely
follows that of Ref. [24]. First, we introduce an operator ŵ
defined in the single-particle Hilbert space of a band
electron via the following operator product

e�iH 1�eiH 0��̂e � Z�1 exp
�X
p;p0

wp;p0 â�p âp0

�
: (8)

The trace in Eq. (7) can be expressed through the operator
ŵ as follows:

tr �e�iH 1�eiH 0��̂eâ
�
p0 âp�� �1̂�e�ŵ��1

p;p0 det�1̂�eŵ�: (9)

Our task is thus reduced to analyzing the quantity eŵ which
can be expressed through single-particle operators:

eŵ � e�iĥ
�1��eiĥ

�0��e� ̂ (10)

with the single-particle Hamiltonian operators ĥ�0;1� de-
fined in Eq. (4) and �e� ̂�pp0 � e� p�pp0 . These relations
help [25] to bring the determinant det�1� eŵ� to the form
Z det�1� n��� � e�iĥ

�1��eiĥ
�0��n���, with the many-body

effects fully accounted for by the algebra involved in the
determinant construction.

Next, the evolution operator product e�iĥ
�1��eiĥ

�0�� is
related to the scattering matrix [24]. For one channel,

Ŝ � e�iĥ
�1��eiĥ

�0�� � �t;t0 �
�
e2i� 0< t; t0 < �;
1; else;

(11)

with the phase shift � � �1 � �0 describing the effect of
the resonance level changing occupancy. This gives

det�1� eŵ� � Z det�1� �Ŝ� 1�n̂: (12)
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Similarly, �1� e�ŵ��1 � �n��� � �1� n����Ŝ�1�1n���
where n and S are operators in the Hilbert space of func-
tions of time. The Greens function (7) then becomes

G��� � L���D���; D � det�1� �Ŝ� 1�n̂; (13)

L �
X
�;�0

~u��0 ~u�e
�i�0��1� n����n̂� Ŝ�1�1� n̂��1

�;�0 ; (14)

with ~u� �
P
pup���� �p�. The factors L and D corre-

spond, in the terminology of Ref. [9], to the open line and
closed loop diagram contributions, respectively.

Once the problem is reduced to analyzing certain one-
particle operators there are two ways to proceed. Given that
n̂ is diagonal in the energy domain, while Ŝ is diagonal in
the time domain, one can choose either representation to
analyze the quantities in Eq. (13). The former is convenient
in equilibrium, since the T � 0 Fermi distribution is just a
Cauchy kernel [9]. However, since for generic n��� the
kernel n̂t;t0 �

R
n���ei��t�t

0��d�=2�� is fairly complicated,
the time representation does not appear to be useful. Here,
instead, we employ the energy representation. We note that
the operator �Ŝ� 1� has a double step structure &�t�&���
t� and argue that the contributions of the two steps can be
treated as independent with logarithmic accuracy. For a
single step in the time domain, the corresponding operator
has the form of a Cauchy kernel in the energy domain.
Such energy-time duality allows to perform calculation in
essentially the same way as in the equilibrium problem,
with the roles of energy and time interchanged.

Since we are primarily interested in the power law
exponent of G��� rather than a prefactor, let us consider
replacing the double step &�t�&��� t� by a sum of
almost nonoverlapping contributions &�t�e�t=�

0
� &�� �

t�e����t�=�0 , �0 < �. Such a replacement is reasonable since
it preserves the steps at t � 0; � and thus affects the cor-
responding shakeup contributions merely by � changed to
�0 in the cutoff of the logarithms. (In addition, we will have
to adjust the extensive part lnDlin / � of the closed loop
contribution as described below.) At the same time, since at
�0 & � the two terms do not overlap, the operator quantities
in Eq. (13) factor into two independent contributions.
Employing this idea, we replace the scattering operator Ŝ
by a product T̂1T̂2, where

�T̂1 � 1�t;t0 � �t;t0 � &�t�Ae�t=�
0
; (15)

�T̂2 � 1�t;t0 � �t;t0 � &��� t�Ae���t�=�
0

(16)

(A � e2i� � 1). We note that at t ’ 0, where T̂1 time
dependence has a step, the operator T̂2 is close to unity,
while at t ’ �, where T̂2 has a step, T̂1 is close unity. This
transformation allows to treat the contributions of T̂1, T̂2

independently, which greatly facilitates analysis.
We first analyze the open line contribution (14). In the

Ŝ � T̂1T̂2 approximation, �0 & �, the operator in Eq. (14)
is factored into independent contributions as
18680
�n̂� Ŝ�1�1̂� n̂��1 �
Y
j�1;2

�1̂� B̂j�1̂� n̂��1; (17)

with B̂j � T̂�1
j � 1̂. Let us write B̂1 in the energy domain:

B̂ 1��e�2i��1�*̂; *̂�;�0 ��
i
2�

1

���0 � i=�0
: (18)

Hence 1� B̂1�1� n̂� � 1� *̂� *̂f��� with f��� �
�e�2i� � 1��1� n��� � 1. To invert this operator we use
analytic properties of *̂. We note that *̂�;�0 turns into a
Cauchy kernel at large �0. Thus in this limit the operator *̂
projects to zero the functions Y���� analytic in the upper
half plane of complex �, Im� > 0, while *̂� � 1� *̂
projects to zero the functions Y���� analytic in the lower
half plane, Im� < 0. Conversely, *̂� operates as an identity
in the subspace of functions Y����, while *̂ is an identity in
the subspace of functions Y����. Hence it is convenient to
employ Riemann-Hilbert factorization

f��� � Y����Y
�1
� ���: (19)

The factors Y� are given in explicit form by

lnY���� � �
1

2�i

Z lnf��0�
�� �0 � i0

d�0: (20)

Then, taking into account analytic properties of Y�,

�1� *̂� *̂f����1
�;�0 � Y������1� *̂�Y�1

� ��0�

� *̂Y�1
� ��0�:

Similarly, the inverse �1̂� B̂2�1̂� n̂��1
�;�0 is given by

e�i��Y�1
� �����1� *̂��Y���0� � *̂�Y���0�ei�

0�; (21)

where *̂�
�;�0 � �i=2����� �0 � i=�0��1. After summing

over �, �0 in Eq. (14), we obtain L��� �
P
�L���e

�i��

where

L��� � ju�j2�1� n���Y�2
� ���: (22)

To better understand this general result, let us consider the
two-step distribution (1). Using Eq. (20), we obtain

lnY� �
~�
�

ln
~�2 � �
~�1 � �

�
�
�

ln
-0 � i=�
~�1 � �

: (23)

Here ~�1;2 � �1;2 � i=� and ~� is defined by Eq. (3).
Substituting this result into Eq. (22), we obtain a split-
peak structure with power law singularities at � � �1;2:

L��� �
ju�j

2�1� n�����-0�
2�=�

��� ~�1�
2���~��=���� ~�2�

2 ~�=�
: (24)

At large j�j � j�2 ��1j, the power law form L / ��2�=�

matches the equilibrium result [9].
We now proceed to calculate the closed loop contribu-

tion (13). First, consider a quasiclassical result, obtained by
treating the time and energy as commuting variables:
3-3
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lndet�1� n̂� Ŝ n̂� �
�

2� �h

Z
ln�1� An��0�d�0: (25)

Thus we have det�1� n̂� Ŝ n̂� � e�.� with complex . �
�� i�0, where the real part � describes broadening of the
FES singularity, while the imaginary part �0 describes
energy offset and can be absorbed in the phase factor
e�i��. Evaluating the integral (25) for the two-step energy
distribution (1), we obtain

���
j�j
4��h

ln�1�4x�1�x�sin2�; ���2��1: (26)

Thus quasiclassical FES energy structure is a broadened
step. The power law singularity appears only beyond the
quasiclassical approximation. To describe it one has to
account for the contributions highly nonlocal in time,
corresponding to many low energy particle-hole
excitations.

Again using the factorization approximation S � T̂1T̂2

with soft cutoff e�t=�
0
, we factor the determinant (14) as

D � D1D2 �
Y
j�1;2

det�1� �T̂j � 1�n̂ (27)

with the two factors accounting for the contributions of
abrupt switching at t � 0 and t � �. It is clear that the two
determinants D1;2 are equal, therefore, it is sufficient to
evaluate just one of them. Let us consider

D1 � det�1� �T̂1 � 1�n̂: (28)

The logarithm lnD1 can be represented as a sum

lnD1 �
1

2
Clin � Clog (29)

with Clin / � and Clog / ln�. We have already estimated
the former [see Eq. (26)]; to obtain the latter, consider
variation � lnD1 due to a change in the distribution n���.
Using the formula � lndetU � tr�U�1�U�, we write

� lnD1 � A trf�1� *̂� � *̂��An̂� 1��1*̂��n̂g (30)

with variation of n taken with respect to x or any other
convenient parameter. To evaluate this expression, one has
to invert the operator 1� *̂� � *̂��An̂� 1�. This is ac-
complished by using Riemann-Hilbert factorization similar
to that discussed above (for details, see Ref. [26]), yielding
the logarithmic term Clog of the form

eClog�x;�� �
�1� i���� ~�=�

2

�1��2�2� ~�
2=2�2

��i�-0���
2=2�2

: (31)

Restoring the exponential from Eqs. (25) and (26), we
obtain the closed loop factor D��� � eClog�x;�� exp�����.

The function D��� �
R
ei��D���d� defines broadening

of singularities in the split FES, Eq. (2). We note that the
broadening is relatively insignificant at �� 1, since
�1;2 / � while both � and the exponents in (31) are of
order �2 at small �. Thus, although FES broadening is
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present for a split Fermi step, its magnitude is not large
enough to smear the split-peak FES profile.

The FES splitting and broadening have different depen-
dence on the step mixing ratio x (Fig. 1), making it possible
to study the complex split FES profile in one device. The
many-body broadening can be distinguished in experiment
from other FES broadening mechanisms, such as the reso-
nant level width and thermal broadening, which have no
dependence on the splitting �1 ��2.

This work has benefited from the discussions with Boris
Muzykantskii and was supported by MRSEC Program of
the National Science Foundation (DMR 02-13282).
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