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Quantum Phase Transition in Capacitively Coupled Double Quantum Dots
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We investigate two equivalent, capacitively coupled semiconducting quantum dots, each coupled to its
own lead, in a regime where there are two electrons on the double dot. With increasing interdot coupling, a
rich range of behavior is uncovered: first a crossover from spin- to charge-Kondo physics, via an
intermediate SU�4� state with entangled spin and charge degrees of freedom, followed by a quantum
phase transition of Kosterlitz-Thouless type to a non-Fermi-liquid ‘‘charge-ordered’’ phase with finite
residual entropy and anomalous transport properties. Physical arguments and numerical renormalization
group methods are employed to obtain a detailed understanding of the problem.
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Introduction.—Semiconducting quantum dots provide
[1] a beautifully direct, tunable mesoscopic realization of
a classic paradigm in many-body theory: the spin-Kondo
effect [2], wherein a single spin in an odd-electron dot is
quenched by coupling to the conduction electrons of a
metallic lead. Recent advances in nanofabrication tech-
niques now also permit the controlled construction of
coupled quantum dot systems, the simplest being double
dot (DD) devices. Central to the design of circuits for logic
and quantum information processing, and widely studied
both theoretically [3–9] and experimentally [10–15], spin
and orbital degrees of freedom are now relevant, leading to
the possibility of creating novel correlated electron states.
Recently, for example, a symmetrical, capacitively coupled
semiconducting DD has been studied [5] in a regime with a
single electron (n � 1) on the DD, and the lowest energy
states �nL; nR� � �1; 0� and �0; 1� near degenerate. The
low-energy physics, which determines the conductance at
small bias, was shown [5] to be governed by a fixed point
with SU�4� symmetry, leading to an unusual strongly
correlated Fermi liquid state where the spin and orbital
degrees of freedom are entangled.

In this Letter we study a capacitively coupled, symmet-
rical semiconducting DD system, but now in a regime with
two electrons on the DD such that �1; 1�, �2; 0�, and �0; 2�
are the relevant low-energy states. As shown below, the
associated physics is both rich and qualitatively distinct
from the n � 1 sector: on increasing the ratio U0=U of
interdot and intradot coupling strengths, we find that the
system first evolves continuously from an SU�2� � SU�2�
spin-Kondo state where the dot spins are in essence sepa-
rately quenched, to an SU�4� Kondo state with entangled
charge and spin degrees of freedom when U0=U � 1.
Thereafter, for a tiny increase in U0=U, there is then a
smooth crossover to a novel charge-Kondo state, followed
by the suppression of charge-pseudospin tunneling, mani-
fest in the collapse of the associated Kondo scale and a
Kosterlitz-Thouless (KT) quantum phase transition to a
doubly degenerate charge-ordered state—a non-Fermi liq-
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uid phase with ln2 entropy and anomalous low-energy
transport and thermodynamic properties. Detailed results
for this diverse range of behavior are obtained using the
numerical renormalization group (NRG) method [16,17],
preceded by simple physical arguments that enable the
essential physics to be understood.

Model and physical picture.—We consider two equiva-
lent, capacitively coupled semiconducting (single-level)
dots, each coupled to its own lead. The Anderson-type
Hamiltonian is H � H0 � HV � HD, where H0 �P

i;k;�ka
y
ki�aki� refers to the leads (i � L=R) and HV �P

i;k;�V�ay
ki�ci� � H:c:� to the lead-dot couplings. HD de-

scribes the isolated dots,

HD �
X

i�L;R

�n̂i � Un̂i"n̂i#� � U0n̂Ln̂R (1)

with n̂i �
P

�n̂i� �
P

�cyi�ci�. U denotes the intradot
Coulomb interaction, and U0 the interdot (capacitive) cou-
pling. In the isolated DD, increasing jj � � (via suitable
gate voltages) generates the usual Coulomb blockade stair-
case. For 0< jj <min�U;U0� the ground state occupancy
is n � 1, with degenerate configurations �nL; nR� � �1; 0�=
�0; 1� and a ln4 residual entropy �kB � 1� [3–5]. Coupling
to the leads quenches this entropy, and the strongly corre-
lated effective low-energy model is SU�4� Kondo [4,5].
The underlying physics here is rich, including spin filtering
arising from the continuous crossover to the SU�2� orbital
Kondo effect in a strong magnetic field [5]. But no quan-
tum phase transition occurs in this n � 1 sector.

We consider by contrast the n � 2 domain of the
Coulomb staircase, arising for min�U; U0� < jj < U0 �
max�U; U0�. Two sets of configurations then dominate,
according to whether U0 + U: the fourfold spin-degenerate
states �nL; nR� � �1; 1�, and the degenerate pair
�2; 0�=�0; 2�, with DD energy difference E�2; 0� �
E�1; 1� � U � U0. The DD ground state is thus �1; 1� for
U0 < U, and �2; 0�=�0; 2� for U0 > U; all six states are
degenerate at U0 � U where the model has SU�4� symme-
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FIG. 1. (a) Phase diagram in the � ~U0; ~U� plane; the SU�4� line
U0 � U is also shown (dotted line). (b) For ~U � 7 in the SC
phase, ln�TK=�� vs � ~U0

c � ~U0��1=2 close to the transition, show-
ing the exponential vanishing of TK. Inset: ln�TK=�� vs ~U0.
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try. We first give physical arguments for the evolution of
the coupled DD-lead system with increasing U0; focusing
on the strongly correlated regime of U=� 1 (� � �V2�
with � the lead density of states). Here an effective
low-energy Hamiltonian may be obtained from second
order perturbation theory (PT) in the lead-dot tunneling
V � VL � VR (with VL=R denoting coupling to the L=R
lead) [18].

For U0 � 0 the dots are fully decoupled. Only �1; 1�
states are relevant. The effective model is obviously two
uncoupled spin-12 Kondo models. The spin entropy is

quenched at the normal Kondo scale TSU�2�
K , leading to a

local singlet ground state [‘‘SU�2� � SU�2� spin Kondo’’].
For U0  U by contrast the �2; 0�=�0; 2� DD states domi-
nate, and as shown below the ground state is a doubly
degenerate ‘‘charge-ordered’’ (CO) state with ln2 entropy.
Continuity then implies a quantum phase transition at some
critical U0

c. As discussed below, for U0 � U the effective
model is SU�4� Kondo (in the n � 2 sector) [18], with
entangled spin/charge degrees of freedom but a singlet
ground state with a larger Kondo scale TSU�4�

K ; and is
connected continuously to the SU�2� � SU�2� spin-
Kondo state arising as U0 ! 0. We thus expect U0

c > U.
Hence consider increasing U0 above U. Since the con-

figurations �1; 1�; �2; 0�; �0; 2� are degenerate for U0 � U,
this full n � 2 manifold must be retained for U0 ’ U.
Virtual excitations to excited states are eliminated via PT,
and divide into two classes [18]: (a) V2L or V2R processes,
involving tunneling to one lead alone. Any configuration
connects to itself via such, e.g., �1; 1� $ �1; 1� under V2R via
excited states �1; 0� or �1; 2�. (b) VLVR processes. These
necessarily connect different manifold configurations; the
full set is clearly �2; 0� $ �1; 1� and �0; 2� $ �1; 1�, there
being no direct coupling between �2; 0� and �0; 2�. As U0

increases above U the charge and spin states begin to
separate: the degenerate charge pair �2; 0�=�0; 2�, compo-
nents of an effective charge pseudospin, lie lower in energy
by U0 � U than the �1; 1� spin states. For sufficiently small
U0 � U > 0, tunneling between the �2; 0�=�0; 2� states can,
however, still arise, and quench the charge pseudospin (and
hence entropy), producing thereby a nondegenerate
charge-Kondo state. But, as above, this tunneling is not
direct, being mediated by the higher energy �1; 1� states.
We thus expect the associated Kondo scale to be dimin-
ished compared to TSU�4�

K [the ‘‘stabilization’’ due to dot-
lead coupling at the SU�4� point] and to decrease as U0

increases; moreover, the quenching will cease to be viable
when the relative energy U0 � U of the �1; 1� states ex-
ceeds roughly TSU�4�

K , leading to a quantum phase transition
to the degenerate CO phase when U0

c � U � TSU�4�
K . Since

the latter is exponentially small for strong correlations, this
implies a critical U0

c exponentially close to U (as confirmed
by NRG below).

These arguments extend readily to U0 < U, but now the
circumstances differ. Spin/charge degrees of freedom do
18640
separate on decreasing U0 from U, �1; 1� states now lying
lower by U � U0 than �2; 0�=�0; 2�. But since the �1; 1� spin
states connect directly to themselves under V2R or V2L (as
above), quenching of the spin entropy is not inhibited and
no transition occurs. Instead, a continuous crossover from
the SU�4� Kondo to the separable SU�2� � SU�2� spin
Kondo is expected for U � U0 � TSU�4�

K .
Results.—The physical picture is thus clear, and the

transition to the degenerate CO phase occurs in the vicin-
ity of the SU�4� point U0 � U [18]. We now present
NRG results for the DD Anderson model, choosing the
midpoint of the n � 2 domain, jj � U=2� U0. This case
is particle-hole (p-h) symmetric, but representative. The
physics is wholly robust to departure from p-h symmetry.

The low-temperature behavior of the model is governed
by two classes of stable fixed points (FP), corresponding
to the two zero temperature phases. The first, a strong
coupling (SC) fixed point, describes all the singlet ground
states and is reached (as T ! 0 or NRG iteration num-
ber N ! 1) for all U0 < U0

c. The corresponding FP
Hamiltonian is simply a doubled version [SU�2� �
SU�2�] of that well known for the spin-1=2 Anderson
model [17]. The dot spins and hence entropy are thus
quenched at T � 0, the system being a Fermi liquid and
characterized by a Kondo scale denoted generically as TK.
The second, reached for all U0 > U0

c, is a line (i.e., a one
parameter family) of charge-ordered (CO) FP. The generic
FP Hamiltonian corresponds to setting � � 0 and U0 � 1.
The DD and leads are then decoupled, but the FP has
internal structure reflecting broken symmetry, since dot
states occur in the degenerate pair �nL; nR� � �2; 0�=�0; 2�
(hence ln2 residual entropy). The line of FP is obtained by
supplementing the free lead Hamiltonians by potential
scattering correlated to dot occupancy, of the form HK �

K
P

i;�
P
k;k0 a

y
ki�ak0i��n̂i � 1� (cf. [18]). The actual value of

K is obtained numerically by matching to the NRG energy
levels.

A comparison of the NRG energy level flows for large
iteration numbers, with the characteristic energy level
structure for the two FP, enables the phase diagram to be
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found, as shown in Fig. 1(a) in the � ~U0 � U0=��; ~U �
U=��� plane [19]. The transition is seen to occur for all
~U � 0 on increasing the interdot ~U0. Consistent with the
physical arguments above, for ~U  1 the critical U0

c lies
exponentially close to the SU�4� line U0 � U [specifically
we find �U0

c=U � 1� ’ 2TSU�4�
K =� ~U1=2]. Figure 1(b) (inset)

shows the ~U0 evolution of TK [19] in the SC phase, for a
typical strongly correlated ~U � 7. It is seen to depart little
from its U0 � 0 value TSU�2�

K / � ~U1=2 exp��1=�J� (with
�J � 8=�2 ~U) [17], indicative of spin-Kondo physics,
until very close to U0 � U where it increases rapidly to
TSU�4�

K / � ~U3=4 exp��1=2�J�; i.e., while exponentially
small, TSU�4�

K / �TSU�2�
K �1=2 shows a strong relative en-

hancement at the SU�4� point [4,5]. However, on increas-
ing U0 above U and entering the charge-Kondo regime, TK
is seen to drop rapidly and vanishes as the SC! CO
transition is approached. The transition is of the KT type,
consistent with the line of CO FP for U0 � U0

c and (from
NRG energy level flows) no evidence for a separate critical
FP, and is further evidenced by [20] the ~U0 ! ~U0

c� behav-
ior TK / exp��a=� ~U0

c � ~U0�1=2�, demonstrated in Fig. 1(b)
for ~U � 7. This behavior is generic, even for U � 0; here
the noninteracting SU�4� (U0 � 0) scale TSU�4�

K � �, and
U0

c � U � TSU�4�
K implies ~U0

c �O�1�, as indeed found
[Fig. 1(a)].

In addition to the two stable (low-temperature) FP, three
unstable FP play an important role at finite T and are seen
clearly in the impurity entropy S �� Simp�: (i) Free orbital
(FO) [17], corresponding to � � 0 � U � U0, with ln16
entropy. This is just the high-T limit of S�T�, reached in all
cases for nonuniversal T � max�U;U0�. (ii) SU�4� local
moment (LMSU�4�), corresponding to � � 0 and U � 1 �
U0, with associated entropy ln6. (iii) SU�2� � SU�2� local
moment (LMSU�2�), � � 0 � U0, and U � 1, with ln22

entropy. Figure 2 shows S�T� vs T=� for ~U � 7 ( ~U0
c ’

7:046). Figure 2(a) illustrates the behavior ‘‘deep’’ in the
CO and SC phases. In the former S�T� simply crosses
directly from its ln2 (CO) residual value to ln16 (FO) on
FIG. 2. S�T� vs T=� for ~U � 7 ( ~U0
c ’ 7:046). (a) ~U0 � 6 (SC,

‘‘uncoupled spin-Kondo’’) and 8 (CO); (b) ~U0 � 6:9 [crossover
to SU�4�]; (c) ~U0 � 7 [SU�4�]; (d) ~U0 � 7:03 (charge-Kondo).
Dotted lines show ln16, ln6, ln4, and ln2, associated with the FO,
LMSU�4�, LMSU�2�, and CO fixed points, respectively.
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the scale T � U0, while in the latter, consistent with the
effective underlying spin-1=2 Kondo physics, there is first
a crossover from S�0� � 0 (SC) to ln4 (LMSU�2�) for T ’

TK �’ TSU�2�
K �. Figure 2(b), for ~U0 � 6:9< ~U, illustrates

the crossover from effective uncoupled SU�2� Kondo to
SU�4�. Here S�T� increases in a two-stage fashion, first to
ln4 (LMSU�2�) for T � TK and then ln6 (LMSU�4�) for T �
�U � U0� � E�2; 0� � E�1; 1�. This behavior is naturally
absent at the SU�4� point, Fig. 2(c): S�T� crosses directly
to ln6 for T � TSU�4�

K . In the charge-Kondo regime Fig. 2(d)
(for ~U0 � 7:03) S�T� again shows the two-stage behavior
typical of a KT transition [9,21], but here it first crosses
from 0 (SC) to ln2 (CO) for T � TK and then to ln6
(LMSU�4�) for T ’ �U0 � U� � E�1; 1� � E�2; 0�, consis-
tent with the physical discussion given above.

The physics discussed above naturally shows up also in
various thermodynamic susceptibilities. For example, as
~U0 is increased past ~U into the charge-Kondo regime, we
find the ‘‘impurity’’ spin susceptibility �s decreases mono-
tonically, but its charge-pseudospin analogue, the stag-
gered charge susceptibility ��

c , given by ��
c � 1=TK,

diverges as ~U0 ! ~U0
c, reflecting the collapse of the

charge-Kondo state and the quantum phase transition. For
~U0 > ~U0

c the (T � 0) ��
c remains infinite, symptomatic

of the broken symmetry CO phase, with ��
c �T� / 1=T as

T ! 0. Further details will be given in subsequent work.
Finally and most importantly, the destruction of the

Kondo effect as the SC! CO transition is approached is
seen vividly in electronic transport, notably the transmis-
sion coefficient Ti�!� � ��Di�!� with Di�!� the T � 0
local single-particle spectrum [Di�!� � �ImGi�!�=�
with Gi�t� � �i!�t�hfci��t�; c

y
i�gi the retarded dot Green

function]. At the Fermi level in particular, ! � 0, Ti�0�
gives the linear differential conductance across one (either)
dot in units of the conductance quantum 2e2=h [22], and at
finite, low bias voltage V, the equilibrium Ti�! � eV�
provides an approximation to the conductance [22]. The
low-energy behavior of Ti�!� is shown in Fig. 3 for a range
of ~U0 spanning the transition. For ~U0 � ~U a relatively
broad Kondo resonance characteristic of the SU�4� point
FIG. 3. Transmission ��Di�!� vs !=�, for ~U � 7 and (top to
bottom) ~U0 � 7; 7:03; 7:044 (SC) and 7:048; 7:1 (CO).
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is apparent, with width / TK � TSU�4�
K . On increasing ~U0

into the charge-Kondo regime the Kondo resonance, now
residing on top of an incoherent continuum, remains intact
with Ti�0� � 1 throughout the SC phase reflecting the
unitarity limit [23]. But it narrows progressively as TK
diminishes, and as ~U0 ! ~U0

c� the Kondo resonance van-
ishes ‘‘on the spot’’ such that for ~U0 > ~U0

c in the CO phase
only the background continuum remains. The linear con-
ductance, in particular, thus drops abruptly at the transi-
tion. This appears to be a general signature of an
underlying KT transition, it being found also for a multi-
level small dot close to a singlet-triplet degeneracy point
[21] and in recent work [9] on two Ising-coupled Kondo
impurities, onto which maps the problem of spinless, ca-
pacitively coupled metallic islands or large dots close to
the degeneracy point between N and N � 1 electron states
[8]. The non-Fermi liquid nature of the CO phase is also
seen clearly here, because Ti�0� � 1=�1� ��I�0�=��� in
terms of the imaginary part of the dot self-energy, where
Ti�0� < 1 in the CO phase implies a nonzero �I�! � 0�
and thus a non-FL state (as also manifest, e.g., in anoma-
lous exponents for the subleading T dependence of ther-
modynamic properties, although the latter effects are
quantitatively minor).

We have considered an equivalent (L=R symmetric) DD
system, with specific results shown for the p-h symmetric
case. For a DD device described by the effective model to
be realizable, the physics should be suitably robust for
breaking these symmetries. As mentioned previously, that
is entirely so for departure from the p-h symmetry. L=R
symmetry can be broken by detuning, e.g., the dot levels,
R=L �  � $, or coupling to the leads, �R � �L. In that
case it is readily shown that the SC FP remains stable, no
new corrections to the FP being generated. For the CO FP
by contrast, additional relevant perturbations arise. This FP
is thus unstable, and flows in its vicinity ultimately cross
over to the SC FP under renormalization, with the cross-
over scale determined by $. We find, however, that for
small but finite $ � TSU�4�

K , the thermodynamics above
are essentially unaffected for T * $ and that the abrupt
drop in the linear conductance at the transition is simply
replaced by a continuous but nonetheless sharp crossover
over a U0 interval on the order of TSU�4�

K . In that sense the
physics described here is thus also robust to L=R symmetry
breaking.

Conclusion.—Motivated by extensive recent interest in
capacitively coupled DD systems [3–15], we have ana-
lyzed a symmetrical, capacitively coupled semiconducting
DD in the two-electron regime, using the NRG technique.
We have shown that on increasing the interdot coupling the
system evolves continuously through a progression of
Fermi liquid states from a purely spin-Kondo state, via
the SU�4� point where charge and spin degrees of freedom
are wholly entangled, to a charge-Kondo state with a
18640
quenched charge pseudospin, before undergoing a quan-
tum phase transition of the Kosterlitz-Thouless type to a
non-Fermi liquid, doubly degenerate charge-ordered
phase. This provides a striking example of the subtle and
many-sided interplay between spin and charge degrees of
freedom in small quantum dots.
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