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Theory of the Stark Effect for P Donors in Si
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We develop an effective mass theory for substitutional donors in silicon in an inhomogeneous
environment. Valley-orbit coupling is included perturbatively. We specifically consider the Stark effect
in Si:P. In this case, the theory becomes more accurate at high fields, while it is designed to give correct
experimental binding energies at zero field. Unexpectedly, the ground state energy for the donor electron
is found to increase with electric field as a consequence of spectrum narrowing of the 1s manifold. Our
results are of particular importance for the Kane quantum computer.
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Phosphorus doped silicon is one of the most well-studied
semiconducting systems [1], owing to its importance in the
electronics industry. A more recent and exotic application
is quantum computing, in which the Kane proposal posits
nuclear spin qubits on Si:P, with interactions mediated by
donor-bound electrons [2]. By tuning the potentials on
aligned electrodes, the electrons are brought to the point
of ionization, in order to control nuclear hyperfine inter-
actions and the overlap between neighboring qubits. Spin
dependent ionization also provides a means for electrical
detection of the qubit state. The precise control of donor-
bound electrons in such a complex environment remains an
experimental challenge [3], requiring detailed theoretical
input [4–6].

The theory of isolated donors in silicon remains one of
the crowning achievements of solid-state physics. One of
the most effective treatments for shallow donors is the
effective mass approximation (EMA) [7], in which the
donor potential is assumed to vary slowly compared to
the crystal potential. As a result, the long- and the short-
wavelength physics decouple. An excess electron on the
donor can be described by an envelope equation—a
Schrödinger equation with an effective mass and a dielec-
tric constant. The theory highlights the most essential
feature of silicon’s bulk band structure: the sixfold degen-
eracy of the conduction valleys. Near the impurity core, the
assumption of slowly varying potential breaks down, caus-
ing valley-orbit interactions to couple envelope functions
in different valleys. A careful treatment of the potential
very near the impurity (the ‘‘central cell’’ region) enables
estimates for the energy splitting of the six valley states,
which are in good agreement with experiments [8].

In a more general, inhomogeneous environment, silicon
donors can be studied by tight-binding techniques [9].
However, existing EMA theories introduce severe approx-
imations that limit their scope. Many important questions
therefore remain open. For example, there is no theory to
determine how the weight of a donor wave function will
redistribute among the six conduction valleys in the pres-
ence of a generic (i.e., low symmetry) potential. Since the
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envelope functions in different valleys have different en-
ergies (due to anisotropy of the effective mass), this is an
important question.

In the context of quantum computing, several recent
papers obtain tractible results for donor ionization, by
ignoring valley-orbit interactions [4–6]. This single-valley
approach provides a useful picture of the distorted enve-
lopes in the individual valleys. However, it does not cap-
ture the spectrum narrowing of the 1s manifold. Smit et al.
have recently studied the Stark effect, beyond the single-
valley EMA, by applying symmetry arguments and pertur-
bation theory [10]. However, their results are applicable
only at low fields, and they also do not capture spectrum
narrowing. In the present Letter, we show how to overcome
such difficulties. We develop a multivalley EMA for shal-
low donors in silicon in a general, inhomogeneous
environment.

Before outlining the theory, we discuss two competing
effects that determine the energy shift of electrons in the 1s
manifold. The most well-known effect is the quadratic
Stark shift, which causes the average energy of the six
valleys to decrease with field. The second effect is spec-
trum narrowing within the 1s manifold. Valley-orbit effects
induce a manifold splitting of about 13 meV for the six 1s
states in Si:P. As the field increases, the donor electron is
gradually pulled off the impurity and out of the central cell,
causing the splitting to narrow. Consequently, the ground
state shifts upwards toward the average energy of the
manifold. An accurate, quantitative analysis is needed to
establish the dominant effect. The energies computed in
our EMA analysis are shown in Fig. 1. We find that
spectrum narrowing is the dominant effect for the ground
state, causing the energy to increase with field. A similar
result was obtained recently in tight-binding simulations of
a gated qubit [9]. However, the differences in that geometry
make comparison difficult. Here, the surprising behavior
arises directly from the multivalley band structure.

We now describe the effective mass theory. The wave
function of the excess electron of the donor impurity can be
written as [7]
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FIG. 1. Solid curves: the variational binding energy as a func-
tion of electric field for the 1s manifold in Si:P. (The second
solid curve from the bottom is doubly degenerate.) Dashed
curve: average energy of the manifold.
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X6
i�1

�i�i�r�Fi�r�; (1)

where �i are the valley composition parameters, reflecting
the portion of the wave function in each of the six valleys.
Normalization gives

P6
i�1 j�ij

2 � 1. The Bloch functions
are given by �i�r� � ui�r�e

iki�r, where ki � k0î specifies
the minimum of the ith conduction valley, and ui has the
periodicity of the crystal lattice. The Fi are envelope
functions for the six valleys.

To develop an envelope equation for Fi, we consider the
potential energy U�r�, including both the impurity Vi�r�
and its surroundings, but excluding the crystal potential
[7]. In this Letter, we specifically consider a uniform
external field E � Eẑ. However, the results are easily
generalized. The impurity ion is not a perfect point charge.
Deviations from point charge behavior Ucc�r� are called
‘‘central cell corrections,’’ because they are strongly local-
ized within a central cell radius of 1–2 Å [11]. Thus,
U�r� � Vi�r� � eEz � ��e2=4��r � Ucc�r�	 � eEz.
Central cell effects can also include the breakdown of the
concept of the dielectric constant and local distortions of
the Si lattice near the P ion. Although there has been
progress in the analytical description of the central cell
[12], a full elucidation is challenging. Below, we overcome
this difficulty by introducing a semianalytical treatment of
central cell effects, using the known energy spectrum of the
Si:P donor electron at zero field.

The envelope equation of Fritzsche and Twose can be
extended to include an external field. The equation goes
beyond the single-valley EMA by including valley-orbit
interactions [12–15]:

X6
j�1

�je
ikj�r

�
Tj��i hr� �

e2

4��r
� eEz � "

�
Fj�r�

�
X6
j�1

�je
ikj�rUcc�r�Fj�r� � 0: (2)

We refer to the first line of (2) as EMA terms, and the
second line as central cell corrections. Because the central
cell terms are localized so strongly near the impurity,
Ucc�r� is essentially a contact potential [15]. This allows
us to replace Fj�r� by F0j, the envelope amplitude at the
impurity site.

In the so-called multivalley EMA of Eq. (2), " is the
energy eigenvalue. The kinetic energy operator Ti�k� is the
quadratic expansion of the conduction band dispersion
relation Ec�k� around the valley minimum ki. This pre-
scription for Ti introduces spurious intervalley contribu-
tions, which can be avoided if necessary [16,17]. However,
in our theory, only the intravalley energy expression will be
computed explicitly. For this case, the quadratic expansion
is appropriate. Note that we have limited our consideration
to the six low-lying valleys in the 1s manifold, as appro-
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priate for the EMA [7]. Higher bands give contributions
much smaller than the terms considered here.

To solve the envelope equation we take a perturbative
approach by assuming that valley-orbit interactions are
weak. We justify this assumption later, by comparing the
sizes of various terms. At zeroth order in the perturbation,
we solve the uncoupled, single-valley equations to obtain
the eigenfunctions F�0�

j �r�. These are then used to compute
the valley-orbit terms. The resulting first-order
Hamiltonian is given in the valley basis
��x;�x;�y;�y;�z;�z�:

H �

~Ex �1x �2xy �2xy �2xz �2xz

�1x
~Ex �2xy �2xy �2xz �2xz

�2xy �2xy
~Ex �1x �2xz �2xz

�2xy �2xy �1x
~Ex �2xz �2xz

�2xz �2xz �2xz �2xz
~Ez �1z

�2xz �2xz �2xz �2xz �1z
~Ez

0
BBBBBBBB@

1
CCCCCCCCA

; (3)

where ~Ei � Ei ��0i, and we have used axial ( ~Ex � ~Ey)
and time reversal ( ~E�z � ~E�z) symmetry. The various
terms in H are defined as follows:

Ej �
Z

F�0�
j

�
Tj �

e2

4��r
� eEz

�
F�0�

j d3r; (4)

�0j �
Z

F�0�
j UccF

�0�
j d3r; (5)

�1j �
Z

F�0�
j e�2ikj�rUccF

�0�
j d3r; (6)

�2ji �
Z

F�0�
j ei�ki�kj��rUccF

�0�
i d3r �i � j�: (7)

Equation (2) also generates off-diagonal terms in the
Hamiltonian, analogous to (4). Because of the fast oscil-
lations in the off-diagonal integrals and the smoothness of
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the effective mass eigenfunctions at zeroth order, such
terms can be ignored in comparison with Ej [14]. The
only nonvanishing off-diagonal terms are �1j and �2ji,
due to the strong localization of Ucc on atomic length
scales. Approximating Ucc as a contact potential [15] gives

�0j � v0F2
0j; �1j � v1F2

0j; �2ji � v2F0jF0i; (8)

where F0j is the magnitude of the envelope function at the
impurity site. Note that we have chosen to include the
electric field in the Ej terms, rather than the central cell
terms. This assignment is justified by comparing �eEz
with the point charge potential �e2=4��r. Within the
central cell, the former becomes dominant only for fields
much larger than the ionization field. The contact poten-
tials v0;1;2 are therefore independent of field. They can be
determined empirically at zero field, where the energy
spectrum of the donor is well-known. This is the central
observation of our theory. Once v0;1;2 are specified, the
field dependence of the valley-orbit terms arises only from
the wave function normalization F�0�

0j . Since F�0�
0j decreases

with increasing field, valley splitting also decreases. This is
the origin of spectrum narrowing.

We now perform the Stark shift calculation for Si:P
using the pertubation theory. The unperturbed (single-
valley) envelope equations are given by�
�
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� eEz

�
F�0�

z �r�

� E�0�
z F�0�

z �r�: (10)

The equation for F�0�
y �r� is identical to F�0�

x �r�, with x $ y.
The longitudinal and transverse effective masses for silicon
are m�

l � 0:916m0 and m�
t � 0:191m0, respectively. The

low temperature dielectric constant is � � 11:4�0.
We use a variational method to solve Eqs. (9) and (10),

obtaining good agreement with numerical results. The
variational forms are given by

F�0�
x �r� � F0x�1� qxz� exp��

���������������������������������������������
x2=a2

x � �y2 � z2�=b2
x

q
�;

F�0�
z �r� � F0z�1� qzz� exp��

���������������������������������������������
z2=a2

z � �x2 � y2�=b2
z

q
�:

These functions are similar to ones used successfully in the
zero-field case [7]. At this order, the envelope equations are
uncoupled, and the valley energies E�0�

x;z are minimized
independently.

The contact potentials are determined at zero field. In
this limit, the problem is isotropic, giving E�0�

x � E�0�
z �

� 31:28 meV, ax � az � 1:360 nm, bx � bz � 2:365 nm,
qx � qz � 0, and F0x � F0z � 6:469� 1012 m�3=2. The
central cell terms do not require valley indices: �0, �1, �2.
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The zero-field binding energies are well-known from ex-
periments [8]: � � � 45:59�1�, �33:89�3�, and
�32:58�2� meV (parentheses indicate the zero-field de-
generacies). By requiring the Hamiltonian (3) to provide
these eigenvalues, the matrix elements are uniquely speci-
fied: ~E � � 35:40 meV, �0 � � 4:13 meV, �1 �
�1:51 meV, �2 � � 2:17 meV, leading to the identifi-
cation v0 � � 1:58� 10�47 Jm3, v1 � � 5:78�
10�48 Jm3, and v2 � � 8:31� 10�48 Jm3, from
Eq. (8). Note that these values depend on our choice of
variational functions. We can now justify the perturbation
approach by comparing the perturbation terms �0;1;2 to the
EMA energy E�0�. The theory improves in accuracy with
increasing field, as the central cell terms grow smaller.
However, the method is also designed to obtain exact
experimental results for the donor binding energies at
zero field.

At nonzero fields, we use the same perturbation pre-
scription. The variational form is used to minimize the
energies of the uncoupled envelope functions, giving E�0�

x;z

and F�0�
x;z. The off-diagonal elements of H are obtained from

(8), using the field-independent values of v0;1;2 just
obtained.

We diagonalize H to obtain the first-order eigenstates.
The resulting eigenvectors are the valley composition pa-
rameters �i. Using the zero-field notation of Ref. [10], we
obtain the lowest (g) and highest (r) eigenvalues:

"g;r �
1
2�
~Ex � ~Ez ��1x � �1z � 2�2xy


�����������������������������������������������������������������������������������������
32�2

2xz � � ~Ex � ~Ez ��1x � �1z � 2�2xy�
2

q
	:

(11)

Corresponding eigenvectors are expressed in the valley
basis:

� g;r � �1; 1; 1; 1; �0
g;r; �0

g;r�=
����������������������
4� 2�0

g;r
2

q
; (12)

where

�0
g;r �

1

4�2xz
��� ~Ex � ~Ez ��1x � �1z � 2�2xy�


�����������������������������������������������������������������������������������������
32�2

2xz � � ~Ex � ~Ez � �1x ��1z � 2�2xy�
2

q
	:

(13)

At zero field, we recover the expected [7] eigenstates �g �

�1; 1; 1; 1; 1; 1�=
���
6

p
and �r � �1; 1; 1; 1;�2;�2�=

������
12

p
.

The remaining eigenvectors are the same as their zero-
field expressions:

� x � �1;�1; 0; 0; 0; 0�=
���
2

p
; (14)

� y � �0; 0; 1;�1; 0; 0�=
���
2

p
; (15)

� z � �0; 0; 0; 0; 1;�1�=
���
2

p
; (16)
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FIG. 2. Amplitude of the ground state envelope function vs
electric field. Inset: ground state valley composition parameters.
The solid lines correspond to the x valley. The dashed lines
correspond to the z valley. All curves are normalized to 1 at zero
field.

PRL 94, 186403 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
13 MAY 2005
� s � �1; 1;�1;�1; 0; 0�=2; (17)

with eigenvalues, from lowest to highest:

�x;y � ~Ex ��1x; (18)

�z � ~Ez ��1z; (19)

�s � ~Ex � �1x � 2�2xy: (20)

The resulting energies, obtained from this perturbation-
variational theory, are plotted in Fig. 1. For increasing
fields, the wave function moves off the impurity site, as
shown in Fig. 2. In both figures, the results are displayed
for fields up to the critical field (� 3:7 MV=m), beyond
which the system is completely unstable to ionization, and
solutions cannot be obtained. Because of the observed
upturn of the ground state energy with electric field, ion-
ization occurs at considerably lower fields than expected
from a single-valley EMA. The latter predicts a downturn
of �g with field. Clearly multivalley effects play a crucial
role in ionization calculations.

An interesting question is whether the electric field can
redistribute the weight of the electron between the six
valleys. As shown in the inset of Fig. 2, the answer is
‘‘yes.’’ The effect is small, except near the critical field.
However, for many donor-bound qubit schemes, the ion-
ized or nearly ionized donor states are utilized for gate
operations [2,18,19], so the regime is of practical interest.
Valley redistribution is also of interest when an unintended
impurity interacts with a quantum dot qubit in a quantum
well [20]. Because of strain effects, the qubit wave function
comprises only the two z valleys [21], so an exchange
coupling between the qubit and impurity electrons occurs
primarily in the z valley channel. It is therefore necessary
to know what portion of the donor wave function resides in
the z valleys.
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In conclusion, we have developed a multivalley EMA
for donor-bound electrons in silicon in an inhomogeneous
potential. The theory is applied to the Stark shift in Si:P. In
contrast with previous theories, we predict that the ground
state energy of the donor will increase with electric field,
due to spectrum narrowing of the 1s manifold. Comparison
with previous results [10] gives corrections as large as
10 meV. Such theories also do not address the valley
redistribution of the wave function, which can amount to
15%. The new effects are most prevalent in the ionization
regime, where quantum computers are expected to operate.
These remarkable results show that even qualitative de-
scriptions of shallow donors in Si must take into account
valley-orbit interactions.
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