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Shear Viscosity of Two-Dimensional Yukawa Systems in the Liquid State
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The shear viscosity of a two-dimensional (2D) liquid was calculated using molecular dynamics
simulations with a Yukawa potential. The viscosity has a minimum at a Coulomb coupling parameter
� of about 17, arising from the temperature dependence of the kinetic and potential contributions.
Previous calculations of 2D viscosity were less extensive as well as for a different potential. The stress
autocorrelation function was found to decay rapidly, contrary to earlier work. These results are useful for
2D condensed matter systems and are compared to a dusty plasma experiment.
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Two-dimensional systems in crystalline or liquid states
[1] are of interest in various fields of physics. Monolayer
particle suspensions can be formed in colloidal suspen-
sions [2] and dusty plasmas [3]. Electrons on the surface of
liquid helium form a 2D Wigner crystal [4]. Ions in a
Penning trap can be confined as a single layer of a one-
component plasma (OCP) [5]. Magnetic flux lines in 2D
high-temperature superconductors form patterns of hexag-
onally correlated vortices [6]. At an atomic scale, gas
atoms adsorb on the surface of substrates such as graphite
[7]. Here we are concerned with liquids, including liquids
near freezing, composed of molecules or particles that
interact with a Yukawa pair potential.

The Yukawa pair potential is widely used in several
fields. These include colloids, monolayer strongly coupled
dusty plasmas, and some polyelectrolytes [8] in biological
and chemical systems. The Yukawa potential energy for
two particles of charge Q separated by a distance r is
U�r� � Q2�4��0r��1 exp��r=�D�, where �D is a screen-
ing length. This potential changes gradually from a long-
range r�1 Coulomb repulsion to a hard-sphere-like repul-
sion as the screening parameter 	 � a=�D is increased.
Here, a � �n���1=2 is the 2D Wigner-Seitz radius [9] and
n is the areal number density of particles.

The literature has only a few reports of transport coef-
ficients computed for 2D liquids using molecular dynamics
(MD) simulations. For the shear viscosity, in particular, we
know of only two reports [10,11], and neither of those are
for a Yukawa potential. Here we present such a simulation,
yielding results for the shear viscosity and the shear stress
autocorrelation function (SACF). We compare results to a
recent 2D experiment [12] and to MD simulations [13–16]
for the shear viscosity of 3D liquids.

Our first motivation arises from the need to model the
recent dusty plasma experiment of Nosenko and Goree
[12]. The experiment was performed with a horizontal
monolayer of polymer microspheres suspended in a
plasma, with no significant vertical motion, so that the
system was 2D. The microspheres interacted with a
Yukawa pair potential [17]. In an undisturbed state, parti-
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cles arranged themselves in a 2D triangular lattice, which
was then melted by an externally applied velocity shear
due to two counterpropagating laser beams applied in situ.
In this way, a 2D liquid was produced that had a shear flow.
The experimenters measured � and found its variation with
temperature.

Our second motivation is to compare � for 2D and 3D
liquids, both with a Yukawa potential. Because shear vis-
cosity has the different units of kgm�1 s�1 and kg s�1 in
3D and 2D, respectively, we divide by the volume and areal
mass density, respectively, yielding the kinematic viscosity

. This quantity has the same units of m2 s�1 for both 3D
and 2D, thereby allowing a comparison of results for 3D
and 2D.

Our simulation uses an equilibrium method to calculate
�. Under equilibrium conditions, momentum transport
arises from random thermal fluctuations of velocity shear
in a homogeneous sample, and there is no macroscopic
shear flow. Moreover, we assume that the velocity shear is
small enough that � does not depend on the shear. Other
types of simulations using nonequilibrium methods [13,14]
would allow externally applied shear, as in the experiment.

In an equilibrium method, shear viscosity can be calcu-
lated using the Green-Kubo relation [18]. Green-Kubo
formulas in general yield a macroscopic phenomenological
transport coefficient, such as the viscosity or diffusion
coefficient, which is written as a time integral of a micro-
scopic time-correlation function. The Green-Kubo ap-
proach assumes that microscopic fluctuations are linear
and the system has no nonequilibrium fields. Green-Kubo
formulas also assume the validity of the Onsager hypothe-
sis, i.e., that spontaneous fluctuations in microscopic quan-
tities decay according to hydrodynamic laws, and that
hydrodynamic quantities are meaningful. This requires
that time scales are long compared to the collision time
and that the system size is large compared to the mean free
path, so that the Navier-Stokes equation and the concept of
viscosity are valid.

To compute the shear viscosity, we start with time series
data for the positions �xi; yi� and velocities �vx;i; vy;i� of N
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particles, as well as the shear stress

Pxy�t� �
XN
i�1

mvx;ivy;i �
X
i

X
j>i

xijyijU0�rij�

rij
: (1)

The first term of Eq. (1) is a kinetic part, which depends
only on particle velocities, and the second term is a poten-
tial part, which depends on the pair potential. Herem is the
particle mass and rij � �xij; yij� is the distance between
particles i and j. We can then compute the SACF

Cshear�t� � hPxy�t�Pxy�0�i: (2)

Finally, we find � by integrating the SACF using the
Green-Kubo relation

� �
1

AkBT

Z 1

0
Cshear�t�dt; (3)

for a 2D liquid of area A and temperature T. Equation (3)
yields the hydrodynamic parameter � based on fluctuating
microscopic parameters entering into the shear stress
Pxy�t�.

We use normalized units in this Letter. The length and
time are normalized by a and !�1

pd , respectively, where

!pd � �Q2=2��0ma3�1=2 [9]. The normalized temperature
is ��1, where � � Q2=4��0akT is the Coulomb coupling
parameter, so that a high temperature corresponds to a
small �. The 2D viscosity � is normalized by �0 �

nm!pda2, and the kinematic viscosity 
 � �=nm is nor-
malized by !pda2.

We performed an MD simulation to calculate �. The
equations of motion for N particles were integrated using
periodic boundary conditions. A thermostat was applied to
achieve a constant T. We recorded particle positions and
velocities, and we used Eqs. (1)–(3) to calculate �.

Our simulation model resembles the experimental sys-
tem in Ref. [12]. In both of them, particles in a monolayer
interact with a Yukawa potential. The values of 	 and �
were similar; all our simulations were performed for 	 �
0:56 while the experiment had 	 � 0:53. There are, how-
ever, significant differences. The simulation is for equilib-
rium conditions, while the experiment of Ref. [12], like
most experiments to measure � [19], used an externally
applied shear and therefore resulted in a measurement of �
under nonequilibrium conditions. The simulation had pe-
riodic boundary conditions, unlike the experiment, and the
equation of motion when a thermostat is used does not
explicitly model the frictional damping of particle motion
due to gas in the experiment.

We now review the details and tests of our simulation
method. We used a velocity Verlet integrator [20] with a
time step 0:02<�t < 0:05!�1

pd . We verified that �t was
small enough by performing a test, with no thermostat,
where we required a fluctuation of total energy <3% over
an interval of 750!�1

pd . We truncated the Yukawa potential
at rcut � 22a, with a switching function to give a smooth
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cutoff between 20a 	 r 	 22a. We verified that the po-
tential energy of the entire system was almost independent
of rcut, for rcut > 12a. We used N � 1024 particles, corre-
sponding to a rectangle 56:99a
 49:08a. The size of this
simulation box limits the maximum meaningful time for
correlation functions to 46!�1

pd , computed as the time for a
compressional sound wave to transit the box. Later we find
that, except for �> 124, which is near freezing, the SACF
decays to zero in less than 46!�1

pd , indicating that our
simulation box was chosen sufficiently small. Ewald sum-
mation was not used because the simulation box was wider
than �D by a factor of 27. The ratio of the two sides of the
box were chosen to allow a perfect triangular lattice to
form at high �.

After completing these tests, we added the Nosé-Hoover
thermostat [21] to the equation of motion. We tested the
thermostat with different values of the thermal relaxation
time, and we chose a value of 1:0!�1

pd , which resulted in a
canonical distribution within a time 4000!�1

pd . To verify
that a thermal equilibrium was attained, we performed the
customary test [22] of temperature fluctuations, character-
ized by their variance and skewness. We also verified that
energy was equally partitioned among collective modes.

Our results were prepared in four steps. First, an initial
configuration of random particle positions and velocities
was chosen. After T reached the desired level and equilib-
rium was attained, we began recording data for a duration
of 4
 104!�1

pd . Second, the SACF was calculated using
Eqs. (1) and (2) for the entire duration. To verify the
validity of this result, we tested ten ensemble averages,
each for a time series of a different duration, and we found
that results for the SACF were independent of the duration,
for the duration we recorded. Third, we integrated the
SACF over t, yielding a value for the shear viscosity �.
To verify that � does not depend on N, we calculated �
using N � 4096 for � � 17 and 124, and we found that �
was the same, within error bars, as for N � 1024. Fourth,
we averaged the results for three to six different initial
configurations, yielding our chief results: the SACF, as
shown in Fig. 1, and �, as shown in Fig. 2(a).

The SACF decays rapidly with time for �< 124. This
decay is almost exponential with t for large �, i.e.,
lnCshear�t� / �t. It decays even faster, lnCshear�t� / �t2,
for small �. These results are shown for � � 17 and 89 in
Fig. 1. Our results are contrary to some previous results
[23,24] for 2D systems, where a Cshear�t� / t

�1 depen-
dence was found in the tail of the stress autocorrelation
function. We discuss this at the end of this Letter.

We find that the shear viscosity calculated using the
Green-Kubo relation is finite in 2D liquids with a
Yukawa potential. This is true for a wide range of �, except
possibly near the freezing region. This is indicated by the
exponential (or faster than exponential) decay of the SACF
with time in Fig. 1, so that the time integral of the SACF
converges when the Green-Kubo relation is used to calcu-
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FIG. 2. (a) Simulation results show that the 2D viscosity �
varies with temperature ��1, and it has a minimum at � � 17.
Data are shown for 	 � 0:56. Error bars represent the uncer-
tainty. (b) Particle trajectories during a time interval of 1:0!�1

pd

for � � 1 indicate a disordered state. (c) Particle trajectories
during a time interval of 1:0!�1

pd for � � 124 indicate a highly
ordered structure. (d) The viscosity � is primarily the sum of two
contributions: kinetic and potential.
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FIG. 1. Shear stress autocorrelation function Cshear�t�, com-
puted using Eq. (2). It is significant that this function decays
exponentially, or even faster, so that integrating it over time t,
Eq. (3), yields a meaningful value of �.
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late �. However, when the system is near freezing, i.e., �>
124, the decay is slower than exponential; thus, our result
for � in this regime is less reliable.

Our chief result is the variation of � with �, Fig. 2(a). At
high temperature, � decreases with �. In this regime, the
system behaves more like a gas, as seen from the orbits
[25] in Fig. 2(b). When � is larger than 17, on the other
hand, � increases with �; it exhibits an exponential depen-
dence on � for �< 124 and a much steeper increase for
�> 124. At �> 124, near the freezing transition, the
system has a highly ordered structure, as seen from the
orbits in Fig. 2(c). The minimum viscosity, which is at � �
17, is 0:14�0. Using experimental parameters [12] a �
0:6 mm and!pd � 40 s�1, our minimum corresponds to a
kinematic viscosity 
 � 2 mm2 s�1 in physical units. This
is about 2 times larger than the kinematic viscosity of
liquid water at STP conditions. This result, as noted pre-
viously [26], is true even though � is itself an extremely
small number for a dusty plasma. The reason is that the
mass density is also very small, so that the kinematic
viscosity, which is the ratio of these two small quantities,
happens to be comparable to that of a denser substance like
water.

We compare our results with the experiment of Ref. [12]
in Fig. 3. As in our simulation, the experimental � varies
with �, and it has a minimum. The minimum value � �
0:13�0 in the experiment matches our result of 0:14�0.

Aside from this agreement in the magnitude of �, how-
ever, there is a difference in the value of � where the
minimum of � occurs. The experimental result exhibits a
much broader minimum, and the minimum occurs at a
much higher �, as seen in Fig. 3. We can suggest two
18500
reasons, both arising from inhomogeneity and anisotropy
in the experiment that are lacking in the simulation. First,
the experiment was nonequilibrium, with an applied shear
that had a specific scale length and that was in a specific
direction. In contrast, the simulation was in equilibrium,
with the shear corresponding to thermal motions that had a
wide range of length scales including very short length
scales, and the direction of the shear fluctuated isotropi-
cally. Second, the experiment had a nonuniform tempera-
ture; therefore, it had nonuniform values of � and �,
whereas the simulation was uniform. The values reported
for � and � in experiment [12] were computed as spatial
averages over a region that had a nonuniform temperature;
this probably had its most significant effect on the value of
�. Thus, it is not surprising that the � for the minimum in
the experiment does not match that of the simulation.
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FIG. 3. Comparison of our 2D simulation with a 2D experi-
ment and a 3D simulation. The experiment [12] used a 2D dusty
plasma at 	 � 0:53 with an externally applied velocity shear.
The simulation of Saigo and Hamaguchi [15] used a 3D liquid
with a Yukawa potential at 	 � 0:50, in the absence of externally
applied shear. In all three cases, � has a minimum.
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To discover the effect of the dimensionality of a system,
we compare the kinematic viscosity of 2D and 3D liquids.
Saigo and Hamaguchi [15] performed an equilibrium
simulation similar to ours, with a Yukawa potential, and
their results for 	 � 0:5 are plotted in Fig. 3. In both cases
the viscosity has a minimum at � � 20, but the magnitudes
are not the same. In 2D, the kinematic viscosity is mostly
larger for the same value of �.

The minimum of � with temperature is a distinctive
feature not found in most simple liquids. In water, for
example, viscosity decreases monotonically with tempera-
ture. Systems such as strongly coupled plasmas with a
long-range repulsive potential, however, tend to have a
minimum. This minimum has been found in a 2D dusty
plasma experiment [12], simulations of liquids with
Yukawa potential in 2D (the present work) and 3D [14–
16], and a simulation of a OCP [13].

The minimum arises from the temperature dependence
of the kinetic and potential contributions to momentum
transport. This is seen in Fig. 2(d), where the kinetic part of
� decreases with �, while the potential part increases with
�. (There is also a third contribution, called the cross term
[18], but we found it is insignificant for our conditions.)
Neither simple liquids nor dilute gases have a minimum
because they are dominated by the potential and kinetic
contributions, respectively.

Finally, we discuss a controversy for shear viscosity in
2D liquids. Previous theoretical and simulation efforts,
with a non-Yukawa potential, yielded conflicting results
for the decay of the SACF. This is important because using
18500
Green-Kubo relations to compute transport coefficients
requires a decay rapid enough for the integral to converge.
Previous efforts using hydrodynamic mode-coupling the-
ory [23] and an MD simulation [24] predicted a t�1 de-
pendence for the tail in the SACF; this slow decay could
lead to a divergent result for the viscosity. However, other
MD simulations [11] yielded a much more rapid decay,
which allows the Green-Kubo integral to converge. Our
result for a Yukawa potential is consistent with the latter,
not the former result. This is true for �< 124; for �> 124,
our data for the decay was not conclusive, so that further
study with a larger simulation box and more initial con-
ditions is needed to resolve this controversy in that range,
which is very near freezing.
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