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Scaling and Instabilities in Bubble Pinch-Off
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We have used a 100 000 frame-per-second video to analyze the pinch-off of nitrogen gas bubbles in
fluids with a wide range of viscosity. If the external fluid is highly viscous (�ext > 100 cP), the bubble
neck radius is proportional to the time before break, �, and decreases smoothly to zero. If the external fluid
has low viscosity (�ext < 10 cP), the radius scales as �1=2 until an instability develops in the gas bubble,
which causes the neck to rupture and tear apart. Finally, if the viscosity of the external fluid is in an
intermediate range, an elongated thread is formed, which breaks apart into micron-sized bubbles.
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FIG. 1. Pinch-off in water-air systems showing the difference
in the symmetry. In both cases, the interior fluid is dark with a
light area in the center due to lensing of the illumination. On the
left is an air bubble in water close to break-up whose shape is
approximately a hyperboloid of revolution. On the right is a
water droplet in air with the conical shape typical of inviscid
self-similar pinch-off.
There has been considerable recent interest in describing
the generic features of the pinch-off process in fluids in
which a single drop breaks into two disconnected pieces.
Most work has been concerned with drops of a dense fluid
such as water [1], glycerin [2], or mercury [3] immersed in
a background fluid (usually air) of negligible density. In
this case, there are two basic types of behavior that depend
on the viscosity of the fluid drop: If the viscosity is negli-
gible, the fluid filament that connects the separating drop-
lets is conical in shape and the minimum neck radius is
described by a �2=3 power law, where � is the time before
separation. If the drop viscosity is large, the connecting
fluid filament is nearly cylindrical with a radius that is
linear in �. Both the power laws and the geometric shape
of the fluid filaments are universal in the sense that they are
independent of the exact values of the fluid properties and
the details of the initial conditions leading to breakup of the
drop. A more detailed classification of typical behaviors is
shown in [4].

If the external fluid in which the droplet is embedded has
appreciable viscosity, the dynamics of the background fluid
can affect the pinch-off process. For example, Doshi et al.
[5] have shown that, if water drops of low viscosity pinch
off in a background of high viscosity oil, the dynamics of
the fluid filament is not self-similar, and the process is
nonuniversal. Even if both the droplet and the external
fluid have zero viscosity, numerical simulations suggest
that the hydrodynamic stability of pinch-off flows is a
sensitive function of the density ratio of the two fluids [6].

In this Letter we use high-speed video microscopy to
investigate pinch-off of gas bubbles embedded in various
background fluids with a range of viscosities. In bubble
pinch-off, the roles of the high and low density fluids are
reversed with respect to conventional liquid droplet pinch-
off, and, although the governing equations are similar in
both cases, the flow patterns and power laws that describe
the evolution of pinch-off are distinctly different. Figure 1
contrasts the shape of the pinch region for an air bubble in
water and a water drop in air. The pinch region in gas
bubbles has the local shape of a cylinder of revolution, with
approximate rotational symmetry about the z axis as well
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as reflection symmetry perpendicular to this axis at the
narrowest point. A water drop pinching off in air, on the
other hand, looks locally like a cone piercing a plate, and
there is no reflection symmetry perpendicular to the rota-
tional axis. If the external fluid has a high viscosity, the
neck of a pinching bubble has a parabolic shape with a
minimum neck radius that decreases linearly in time. For
intermediate external viscosities, the bubble shape can
produce elongated threads similar to those seen in Doshi
et al. [5] using two liquids. For low viscosity background
fluids, the bubble neck radius scales as �1=2 until an insta-
bility truncates the power law collapse to zero neck diame-
ter. To our knowledge, this is the first observation of this
instability.

The basic equation describing bubble dynamics near the
pinch region is a cylindrical version of the general
Rayleigh-Plesset equation [7,8]:
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where R is the radius of the bubble, � is the surface
tension, �ext and 
ext are the viscosity and density of the
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exterior fluid, and PB and Pr are the pressures in the bubble
and at some radius r � R, respectively. The derivation of
this equation assumes that the external fluid flow is purely
radial and has no vorticity so that the velocity can be de-
scribed in terms of a potential. We ignore the rising mo-
tion of the bubble, characterized by a time scale of
��extg=�
�

1=3, which is on the order of seconds and
much larger than the few milliseconds required for
pinch-off to occur. If we neglect the pressure in the bubble
and assume a power law solution in time, R � A�tc � t��,
then there are only two values of � that yield consistent
asymptotic balances: � � 1=2 or 1. When � � 1=2, the
logarithmic term is identically zero so 
RR balances with
_R2, regardless of the choice of A. When � � 1, the most

divergent parts of the equation are the surface tension and
viscous terms, which are in balance when A � �=2�ext.
When 
int=
ext � 1, the interior flow cannot be neglected
and the equation is no longer valid, especially since the
reflection symmetry about the z axis is broken (Fig. 1). In
this regime, one would expect � � 1 for the viscosity
dominated flows and � � 2=3 for potential flow, as ob-
served in numerous experiments and simulations [1,2,6,9–
13].

The bubbles in our experiment consisted of pure nitro-
gen gas (viscosity � 0:018 cP). The fluids that we used
included acetone (0.3 cP), water-glycerin mixtures (0.9–
1011 cP), canola oil (72 cP), light corn syrup (2500 cP),
and N4000 viscosity standard (12 000 cP) [14]. The surface
tensions of the liquids were measured by capillary rise, and
all were found to be within a factor of 2 of the surface
tension of water (�72 dyn=cm), except for acetone, which
has a surface tension of � 23 dyn=cm at room tempera-
FIG. 2. A picture of a nitrogen bubble near pinch-off as it rises
due to buoyancy in corn syrup. The illumination is from behind.
The inner diameter of the nozzle is 3.2 mm. The outside fluid
appears white while the bubble remains black. Rmin is the
minimum radius of the neck region of the bubble. Figure 3
shows a highly magnified view of this region.
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ture. The experimental apparatus consisted of a 2-gallon
aquarium tank filled with the appropriate fluid (corn syrup,
water, etc.) and a glass or steel nozzle with an inner
diameter of 3.2 mm placed 15 cm below the surface to
deliver the bubbles (Fig. 2). A nitrogen gas line was con-
nected to the nozzle through a mass flow controller so that
the bubbling rate could be finely tuned. The aquarium tank
was used to minimize the effects of the walls on the ex-
ternal fluid flow, so that we can assume the flow velocity is
zero at infinity. The bubbles were produced at a rate of
approximately one every five seconds. The imaging was
done with an Infinity Research Phantom 7.0 digital video
camera, capable of 100 000 fps at a 128� 64 pixel reso-
lution. The camera was attached to an adjustable bellows
with a long focal distance microscope objective. The ob-
jective provided a resolution of 2:38 �m per pixel. The
camera was triggered when the bubble began to pinch off,
and the frame rate was chosen to match the speed of the
breakup, which spanned several orders of magnitude de-
pending on the viscosity of the fluids. Finally, the time
evolution of the neck diameter and the curvature was
extracted from the high-speed video by an edge-finding
routine.

Figure 3 shows typical image sequences of the pinch-off
of N2 bubbles in several exterior fluids. Gas bubbles pinch-
ing in external fluids with viscosities * 100 cP resemble
Fig. 3(a), which shows nitrogen in glycerin. The bubbles
have a cylindrical shape with a constant parabolic axial
curvature, indicating a non-self-similar profile. The neck
diameter continuously shrinks until the bubble separates
into two pieces with sharply pointed ends. A more detailed
numerical analysis of this type of behavior can is given by
Suryo et al. [15]. For lower values of the external fluid
viscosity (10–100 cP), there is a transition to a different
flow regime represented by Fig. 3(b). The variation of Rmin

with time is no longer linear, and the axial curvature does
not remain constant. As the neck radius approaches zero,
its collapse is cut off by the formation of an elongated
thread with a constant radius of � 6 �m, which is in good
agreement with the scaling law described in [5] based on
the ratio of internal to external viscosities. The thread
persists for a surprisingly long time compared to the time
it takes to collapse, and then eventually breaks up into
� 50 satellite bubbles due to the Rayleigh instability of a
column of fluid. This type of non-self-similar pinch-off has
been recently observed by Doshi et al. [5] using water
drops immersed in high viscosity silicone oil. Figure 3(b)
shows the first evidence of this type of flow in gas bubbles.
For even lower values of the external viscosity (&10 cP),
we observed a transition to another flow regime, repre-
sented by Fig. 3(c), showing gas bubbles in water. Here, the
axial curvature is more hyperbolic than parabolic, which
has been previously predicted [16]. In contrast to the
behavior at higher viscosities, the neck radius does not
smoothly decrease to zero or a finite constant; rather, it
undergoes a sudden rupture at a characteristic length scale
of Rmin � 25 �m and a time scale of 10 �s, as seen in
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FIG. 4. N2 bubble in water at the moment of rupture. The
speed of the video was 100 000 fps and the exposure time was
2 �s. The dark areas are gas and the lighter areas are water.
Because of the focusing of the light in the center and the lack of
resolution (128 pixels� 64 pixels), it is difficult to distinguish
between gas and liquid.

FIG. 3. The pinch-off of an interior fluid (dark) in an exterior
fluid (light). (a) Nitrogen bubble in glycerin. This represents the
generic behavior we observed for gas bubbles pinching in a high
viscosity external fluid. The neck radius (Rmin) continually
shrinks to zero with approximately constant axial curvature
and then separates into two bubbles with cusplike ends.
(b) Nitrogen bubble in 37.4 cP glycerin-water solution. As the
bubble collapses, the two disjoined pieces form a thread of gas
between them, then the thread proceeds to break up into micron-
sized bubbles. (c) The low viscosity of the external fluid leads to
an instability, which causes the bubble to rupture into two pieces
with ragged ends. Note the two small satellite bubbles which are
formed in the process.
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more detail in Fig. 4. The ratio of radial to axial curvatures
at Rmin varies by less than a factor of 2 while � changes by a
factor of 100, which might suggest a self-similar flow.
However, the truly asymptotic regime is masked by the
instability. A robust feature of the rupture process is the
formation of two satellite bubbles approximately 10 �m in
diameter. We believe that this rupture is due to an insta-
bility in the interface between the gas and the liquid,
similar to the Kelvin-Helmholtz instability. The pinch-off
of one inviscid fluid inside another has been studied pre-
viously using numerical simulations [6]. The calculations
show that, when the density ratio 
ext=
int > 6:2, the so-
lutions become unstable. For bubbles in conventional flu-
ids, 
ext=
int � 1000, so pinch-off flows for bubbles in an
inviscid external fluid are expected to be strongly unstable.
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The three pinch-off mechanisms depicted in Fig. 3 can
also be distinguished by their characteristic behaviors of
Rmin vs �. A plot of the neck diameter as a function of � �
�tc � t� for three representative external fluids is shown in
Fig. 5. For the low viscosities, tc was bracketed by the
video frame when the neck was connected, and the next
frame when the bubble had ruptured and separated, giving
an uncertainty of 	5 �s. For videos where elongated
threads of gas appeared, tc was chosen to be the time
when the neck radius became constant (� 6 �m), since
the flow after this point is determined by different dynam-
ics [5]. In the high viscosity limit, tc was chosen to be the
point at which the two cusps separated.

Gas bubbles in high viscosity fluids have a neck that
shrinks linearly in time due to a balance of surface tension
and viscosity. Rmin is given by ��=2�ext��, where the
prefactor is determined by Eq. (1) and has no adjustable
parameters. The plot of this function in Fig. 5 shows that it
agrees with the experimental data for glycerin to within a
few percent. In the inviscid limit, the inertial terms in
Eq. (1) dominate the flow and Rmin scales as
�L�=
ext�

1=4�1=2, where L is the nozzle radius. The pre-
factor here is determined by dimensional considerations up
to an overall dimensionless constant. The experimental
data for water is accurately described by choosing a value
of 1.22 for the constant, as shown in Fig. 5. The �1=2 scaling
of Rmin for bubbles in water has been observed [16,17] and
predicted [7,16] previously, although those measurements
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FIG. 5. Log-log plot of the minimum neck radius vs � (time
before the pinch) for bubbles in three representative fluids:
circles, water; squares, water-glycerin; triangles, pure glycerin.
Each curve corresponds to one of the sequences of pictures in
Fig. 3. When the external flow was in the inertial regime (low
viscosity limit), the neck radius followed a (�1=2) scaling law. In
the Stokes flow regime (high viscosity limit), the neck radius
followed a linear scaling law. The derivation of the prefactor for
each of these cases is given in the text. The type of final pinch-off
corresponding to each curve is indicated by the text at the short
time end point.

FIG. 6. Semi-log plot of the fitted power law exponent vs �ext

for bubbles in fluids of varying viscosity. The measurements
were taken for flows where Rmin < 200 �m, and were fitted
using the model Rmin � A�tc � t��. Between 10 and 100 cP, the
exponent has a transition from � � 1=2 to 1.
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were limited to � > 2 ms and could not resolve features
such as the rupture seen in Fig. 4. For values of the external
fluid viscosity between 10 and 100 cP, Rmin scales with �
with an exponent between 1=2 and 1.

To investigate the power law dependence between Rmin

and � as a function of viscosity, we fitted all data below
Rmin � 200 �m to a power law model (Rmin � A��), and
plotted � as a function of viscosity (Fig. 6). The transition
from � � 1=2 to 1 occurs in a surprisingly narrow regime,
which is associated with thread formation. Also, it is note-
worthy that data obtained from fluids with viscosities
varying over 5 orders of magnitude and surface tensions
varying by a factor of 2 lie on a smooth continuous curve.

In conclusion, we have seen three basic types of flow
behavior in bubble pinch-off. Bubbles in viscous fluids
(�ext > 100 cP) collapse linearly in time, until the neck
radius reaches dimensions beyond optical resolution.
Bubbles in fluids with a rather narrow intermediate range
of viscosities (10–100 cP) produce long, thin threads of gas
of constant radius. Finally, bubbles in low viscosity fluids
(�ext < 10 cP), such as water, follow a �1=2 power law until
the shear between the interior and exterior flows causes an
instability that leads to the rupture of the bubble. The
dynamics of rupture is remarkably fast; the neck profile
evolves from a smooth hyperboloid of revolution to two
truncated cones with ragged edges within 10 �s. Both
characteristic power laws are asymptotic solutions to the
Rayleigh-Plesset equation for cylindrical bubbles. In all the
flow regimes, the neck region is a cylinder of revolution
with reflection symmetry. Although previous numerical
work has identified an instability in the self-similar solu-
18450
tion with Rmin 
 �2=3 [6], the instability observed in the
experiments seems to be an instability of the Rmin 
 �1=2

solution.
This work was supported by NASA NAG8-1437 and

NSF DMR 9971519.
2-4
[1] A. U. Chen, P. K. Notz, and O. A. Basaran, Phys. Rev. Lett.
88, 174501 (2002).

[2] X. D. Shi, M. P. Brenner, and S. R. Nagel, Science 265,
219 (1994).

[3] J. C. Burton, J. E. Rutledge, and P. Taborek, Phys. Rev.
Lett. 92, 244505 (2004).

[4] I. Cohen and S. R. Nagel, Phys. Fluids 13, 3533 (2001).
[5] P. Doshi, I. Cohen, W. W. Zhang, M. Siegel, P. Howell, O.

Basaran, and S. R. Nagel, Science 302, 1185 (2003).
[6] D. Leppinen and J. R. Lister, Phys. Fluids 15, 568 (2003).
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