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Theory of Mesoscopic Magnetism in Photonic Crystals
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We provide a rigorous theoretical basis for the artificial magnetic activity of metamaterials near
resonances. Our approach is a renormalization-based scheme that authorizes a completely general theory.
The major result is an explicit expression of the effective permeability, in terms of resonant frequencies.
The theoretical results are checked numerically, and we give applications of our theory to left-handed
media and to the solution of the Pokrovski-Efros paradox.
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FIG. 1. The basic cell of the photonic crystal.
Photonic crystals are artificial devices, periodically
structured, that exhibit photonic band gaps [1]. Dielectric
photonic crystals are considered in the optical domain, but
metallic ones (or wire mesh photonic crystals) are also
studied in the microwave or terahertz range [2,3]. It has
been well established [4] that, below a cut frequency, wire
mesh photonic crystals behave as if they were homoge-
neous with a negative, frequency-dependent permittivity
given by "eff � 1� 2��=�!=c�2, where 1=� �
d2 log�d=r� (here d is the period of the crystal and r is
the radius of the wires) [5]. For a frequency below !p �����������
2��

p
c, the homogenized permittivity is negative and the

propagation of waves is forbidden. The homogenized per-
mittivity represents the scattering behavior of the wire
mesh photonic crystal for large enough wavelengths, and
explains why these structures present a photonic band gap
down to the null frequency (at least for infinitely conduct-
ing wires). Recently, Pendry and coauthors suggested that
it was possible to design photonic crystals with nonmag-
netic materials in such a way that they possess an artificial
magnetic activity [6] and are described by an effective
permeability. Basically, two geometries have been sug-
gested: split ring resonators and dielectric fibers with a
large permittivity [6,7]. It is believed that with these ge-
ometries it is possible to obtain a negative permeability
and, by adding a wire mesh structure, to design a material
with both a negative permittivity and a negative perme-
ability. Materials with these characteristics do not seem to
exist in nature, and therefore one tries to design them
artificially (they are called ‘‘left-handed materials’’).
They were studied theoretically long ago in a speculative
and quite fascinating work by Veselago [8]. He showed that
they behave as if they had a negative index. Among other
properties, the Snell-Descartes law is reversed: at the inter-
face between air and the material, a beam is refracted on
the same side of the normal. These ideas have motivated a
lot of work, both experimentally and numerically (in par-
ticular, in [9]), as well as a lot of polemical issues [10].
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It seems, however, that, hitherto, there is no unified
theoretical approach to this kind of effective behavior.
The method generally followed consists in characterizing
the scattering matrix of a basic resonator by means of the "
and 
 parameters, and then deriving the effective parame-
ters without taking into account the coupling between each
resonator [11]. In the present work, we address this prob-
lem by using a renormalization group analysis, which gives
us deep insight into the phenomena and predicts that the
existence of a negative 
 is linked to internal resonances.
In fact, the possibility of getting negative permeability is
very different from the possibility of getting negative
permittivity: while the negative " is obtained for low
frequencies (i.e., large wavelength with respect to the wires
constituting the crystal), the negative 
 is obtained in the
resonant domain, and only for a rather small interval of
frequencies. In particular, our approach explains the ap-
parent paradox, raised by Pokrovsky and Efros [12], that,
by embedding wires in a medium with negative 
, one
does not get a left-handed medium. It also gives a complete
analysis of the effective properties of a wire mesh photonic
crystal, with very high conductivity. Before going into the
details of our study, we stress that we have tried here to
make a bridge between two domains that seem to be in
opposition: that of the resonances and that of
homogenization.
2-1  2005 The American Physical Society
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In the following, we consider a 2D photonic crystal
whose Wigner-Seitz cell Y is given in Fig. 1. It is made
of a dielectric rod (relative permittivity "i, cross sectionD)
embedded in a dielectric matrix "e. When the contrast
between "i and "e is substantial enough, there appear
Mie resonances into the highest index material. It was
suggested some time ago [13] that such internal resonances
might result in the opening of forbidden gaps.

Our point is to show that, near these resonances, the
device behaves as if it had homogeneous electromagnetic
parameters "h and 
h. Of course, for this situation to be
physically sound, the resonant wavelengths should be
larger than the period; otherwise the medium could not
be described by homogeneous parameters. That is why we
require, as in [6], that "i be much higher than "e. The
method that we employ consists of changing (‘‘renormal-
izing’’) the properties of the medium while keeping the
relevant physical phenomena, i.e., the resonances, un-
changed. To do so, we choose a small number � < 1, and
we proceed to the following operation, denoted by R. We
multiply the radius of the rods and the period by �, while
maintaining constant the domain � where the rods are
contained (the number N of rods is increased as N �
j�j=�2). We divide the permittivity " of the rods by �2

(the optical diameter remains constant). The wave is p
polarized so that the induction field reads B�x� � u�x�ez,
but the vectorial form will prove useful for the analysis. We
write B�x;R� and E�x;R�, the fields scattered by the
renormalized structure. The point is to iterate this opera-
tion n times and study the limit of B�x;Rn� and E�x;Rn�
as n tends to infinity. In order to do so, we use a two-scale
expansion of �E;B�:

B � B0�x;x=�n� � �nB1 � 	 	 	 ;

E � E0�x;x=�n� � �nE1 � 	 	 	 ;
(1)

where the fields E0;B0 depend on both the real space
variable x (the global variable) and on the Wigner-Seitz
cell variable y (the local variable). The fields are periodic
with respect to y. Our point is to find the limit fields E0;B0.
The local variable is in fact a hidden one: it is an internal
degree of freedom. The true (observable) macroscopic
fields �Eh;Bh� are the averages of the microscopic fields
�E0;B0� over Y:

B h�x� �
Z
Y
B0�x; y�dy;Eh�x� �

Z
Y
E0�x; y�dy: (2)

Although we do not find it relevant to present all the
mathematical details, we believe that it is important to
offer the reader a general view of the method employed
to get the limit fields. A complete and rigorous mathemati-
cal derivation can be found in [14]

We analyze first the behavior of the fields with respect to
the local variable. That is, we wish to describe the micro-
scopic behavior of the fields with respect to their internal
degrees of freedom. Using the expansion (1) of the field,
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the r� 	 operator is transformed into

r� 	 ! rx � 	 � ��nry � 	

(we have to make explicit on which variables the deriva-
tions operate because there are two sets of variables).
Plugging these expressions into the Maxwell system and
identifying the terms that correspond to the same power of
�n, we obtain the following system for the microscopic
electric field:

ry � E0 � 0 on Y; ry 	E0 � 0 on Y nD (3)

Besides, E0 � 0 onD and E1 � 0 on Y nD. This system is
of the electrostatic type: E0 does not depend on the micro-
scopic induction field, nor does it depend upon the wave-
length. As a matter of fact, on Y nD, E0 does not depend
on the variable y, as can be deduced from system (3). Let us
now turn to the magnetic field. The system satisfied by B0

is of an entirely different nature:

ry�B0��i!"iE1 onY; ry�E1� i!B0 onD: (4)

We have obtained a microscopic Maxwell system that
describes the microscopic behavior of the fields. It can be
seen that E1 gives indeed a first order expansion of the field
insideD: it replaces E0, which is null there. Let us now use
the fact that the fields are polarized. We write B0�x� �
u0�x�ez. Plugging this expression into system (4) shows
that the magnetic field is independent of y on Y nD. Next,
by combining the equation in system (4), we find that

�yu0 � k2"iu0 � 0 onD; u0 � const on Y nD: (5)

From this system, we deduce that the microscopic induc-
tion field is linked to the macroscopic one by u0�x; y� �
�m�y�=
h�uh�x�, where m satisfies

�ym� k2"im � 0 on D; m � 1 on Y nD; (6)

and 
h, which shall be interpreted below as a relative
permeability, is the mean value of m:
h �

R
Y m�y�dy.

Until now, we have clarified what happens at the micro-
scopic scale. The point now is to derive the equations that
are satisfied by the macroscopic fields. The propagation
equations read, for y 2 Y nD, as

rx � B0 �ry � B1 � �i!"0"eE0;

rx � E0 � i!B0:
(7)

In the first line, we recognize the Maxwell-Ampère equa-
tion with the extra term ry � B1. This term is homoge-
neous to an electric displacement field, and it represents the
polarization due to the presence of the scatterers. Indeed, in
the long wavelength regime, the emission diagram of a
fiber is that of a dipole (for the p polarization). As a
consequence, the whole set of fibers that constitutes the
photonic crystal behaves as a set of coupled dipoles, pro-
ducing a possibly anisotropic permittivity tensor. More
precisely, since u0 is independent of y on Y nD, we obtain
2-2
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FIG. 2 (color online). Real (thick lines) and imaginary (thin
lines) parts of the transmission for the metamaterial (solid lines)
and the homogenized material (dashed lines).
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the following system satisfied by u1:

�yu1 � 0 on Y nD;
@u1
@n

� �n 	 rxu0 on D; (8)

where n � �n1; n2� is the normal vector field to D. This
system implies a linear relation between u1 and u0 of the
form ryu1 � P �y�rxu0, where

P �y� �
1� @w1

@x1
@w2

@x1
@w1

@x2
1� @w2

@x2

 !
; (9)

and wi satisfies

�wi � 0 on Y nD;
@wi
@n

� �ni on @D: (10)

It is not difficult to see [15,16] that Ah �
R
YnD P �y�dy is

the inverse of the effective permittivity tensor "h�� A�1
h �

of the photonic crystal. The effective macroscopic equation
can now be obtained by averaging system (7) on Y nD:

r 	 �"�1
h r�
�1

h uh�� � k2uh � 0: (11)

The macroscopic behavior of the system is characterized
by an effective permittivity tensor "h and an effective
permeability 
h. This shows that the system exhibits an
artificial magnetic activity. There are two huge differences
between the effective permittivity and the effective perme-
ability: the permittivity can be a matrix, and hence the
medium can be anisotropic, whereas the effective perme-
ability is always a scalar, and therefore no anisotropic
permeability can be obtained. Second, the permittivity is
not frequency dependent; it is a static permittivity, whereas
the permeability depends on the frequency. Let us give a
closer look to the system of equations that defines the
effective permeability 
h. As it stands in (6), it is just a
partial differential equation problem. Under this form, its
physical meaning does not appear clearly. To make it more
explicit, let us recast it into an eigenvalue problem. This
will help us to understand the underlying physics of what
might look, at this stage, as a rather abstract result. The
system (6) has a unique solution only if there is no function
 such that  is null on Y nD and  satisfies the same
Helmholtz equation onD. Otherwise,m�  would still be
a solution of (6). Following spectral theory [17], we denote
H � �"�1

i � and we look for functions � satisfying the
eigenvalue problem:

� � 0 on Y nD; H� � k2� on D: (12)

We get a set of eigenvalues k2n and a set of eigenfunctions
j�ni. The physical meaning of these eigenvalues can be
understood by going back to the unrenormalized initial
fiber, with permittivity "i. This fiber alone possesses reso-
nant frequencies. They correspond to modes that are
strongly localized inside the fiber. However, when there
is a large number of fibers, these resonances are slightly
shifted due to coupling, and furthermore, these resonances
are modified by the renormalization process. That is pre-
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cisely why the eigenvalues of problem (12) are the renor-
malized Mie frequencies of the fiber.

For a given wave vector k2, we look for a solution m by
expanding it on the basis j�ni, by noting that m� 1 is null
on Y nD: m�y� � 1�

P
nmnj�ni: The coefficients are

obtained by inserting this expansion into (6). We get, after
averaging, the effective permeability 
h � h1jmi under
the form


h�k� � 1� k2
X
n

jh�nj1ij
2

k2n � k2
: (13)

We have obtained a completely general expression for the
effective permeability. It relies on the cavity modes of the
fiber only. In the vicinity of a resonance k2n, we have 
h �
1� k2njh�nj1ij

2�k2 � k2n��1, which shows, in complete
generality, that the permeability exhibits anomalous dis-
persion near the resonances, and becomes negative there. It
should also be noted that only the eigenfunctions with
nonzero mean value contribute. This is due to the fact
that we have kept only the first order terms in the expan-
sions (1).

Let us give an explicit computation in case of a square
fiber. The derivation is rather straightforward and follows
closely that of the well-known TE modes in waveguides
with square section. The eigenfunctions are �nm�y� �
2 sin�n�y1� sin�m�y2�, and the corresponding eigenvalues
are k2nm � �2�n2 �m2�. The expansion of m on this basis
leads to the following effective permeability:


h�k� � 1�
64a2

�4

X
�n;m�odd

k2

n2m2�~k2nm � k2�
; (14)

where ~k2nm � k2nm=a
2"i. Let us now turn to some numerical

applications. First, we note that our analysis is supposed to
2-3
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work when there are Mie resonances at wavelengths large
with respect to the period of the crystal. This was the
situation described in [7], where " � 200� 5i. We choose
this value for our own numerical computations, the point
being to test the validity of the theory.

Using a rigorous diffraction code for gratings [18], we
plot the transmission spectrum (dashed lines in Fig. 2) for a
stack of three diffraction gratings made of square rods.
There is a band gap for $=d between 8 and 12, due to a Mie
resonance. In order to test our results, we plot the trans-
mission spectrum of a homogeneous slab (solid lines in
Fig. 2) with parameters "h � 1:7 [this value is obtained
numerically from the resolution of problem (10)] and 
h
given in (14). We see in Fig. 2 that both curves fit very well,
indicating that, although the wavelength is not that large,
the whole photonic crystal behaves as a homogeneous
magnetic material. The discrepancy that is seen around
$=d � 6:5 is due to the presence of a Mie resonance of
null mean value that is not taken into account in our theory.
Only by expanding the fields to the second order could we
incorporate this resonance in our global result.

Finally, let us use these results to analyze recent prob-
lem. In [12], Pokrovsky and Efros showed that it was not
possible to design a negative index medium by embedding
metallic wires into a matrix with a negative 
, whereas the
converse is possible. This can be explained in the following
manner: The negative permittivity is obtained as a macro-
scopic effect, by which we mean that it is an interference
effect and not an effect that takes place at the scale of the
microscopic cell only. In a much different way, the nega-
tive permeability is obtained as a purely local effect, which
happens at the scale of the microscopic cell. Therefore, for
this effect to occur, no strong coupling between the fibers is
requested; the coupling has to be sufficient just enough so
that the incident field can reach the fibers by the tunnel
effect. In our model, the propagation equation of the struc-
ture is obtained immediately by replacing "e by �"e.
Then, near the regions of anomalous dispersion, both
parameters are negative and the propagation equation is
the usual Helmholtz equation. Consequently, the field can
propagate. On the contrary, for metallic wires in a medium
with negative 
, the propagation equation reads [16,19]
�u� k2
�1� 2��=
k2�u � 0, which leads to evanes-
cent waves.

We have given in this work a theory of the mesoscopic
magnetism in metamaterials. We have shown that it is
possible to give a homogenized description of a heteroge-
neous device in the resonance domain. To do so, we have
used a renormalization approach that shows that two scales
should be distinguished: a microscopic one and a macro-
scopic one. We have shown that the artificial, mesoscopic
magnetism is due to microscopic magnetic moments in-
18390
duced by geometric resonances. We have considered here a
two-dimensional photonic crystal, which allows one to
study polarized fields. Work is in progress to extend the
approach to structures of finite extension, i.e., fibers of
finite length. New phenomena are to be expected due to
the coupling between the E and H fields. However, the
effective magnetic behavior still remains, and for in-plane
waves, i.e., for an incident field polarized along the axis of
the fibers, the theory presented here is valid. This situation
is the one encountered in the published experimental stud-
ies. So far, the analysis works for high permittivities, but
we stress that there are inner resonances in gratings for
much lower contrasts as well [20]. Therefore, we do be-
lieve that the same physics can be found in the optical
range of wavelengths.
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