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Direct Proof of the Tree-Level Scattering Amplitude Recursion Relation in Yang-Mills Theory
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Recently, by using the known structure of one-loop scattering amplitudes for gluons in Yang-Mills
theory, a recursion relation for tree-level scattering amplitudes has been deduced. Here, we give a short
and direct proof of this recursion relation based on properties of tree-level amplitudes only.
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1. Introduction.—Lately, there has been much renewed
progress in understanding tree-level and one-loop gluon
scattering amplitudes in Yang-Mills theory. Among other
things, a new set of recursion relations for computing tree-
level amplitudes of gluons has recently been introduced by
Britto, Cachazo, and Feng (BCF) [1]. These relations ex-
press any tree-level amplitude of gluons as a sum over
terms constructed from the product of two subamplitudes
with fewer gluons times a Feynman propagator. The sub-
amplitudes are physical, on shell amplitudes with shifted
momenta. These recursion relations were deduced by using
known properties of one-loop amplitudes to make infer-
ences about tree amplitudes.

A straightforward application of these recursion rela-
tions gives new and unexpectedly simple forms for many
amplitudes. Many of these very compact forms have been
obtained very recently [2–4] using somewhat related
methods.

The recursion relations can be schematically written as
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r;h

Ah
r�1
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r
A�h
n�r�1: (1)

Here, for any positive integer s, As denotes the tree-level
scattering amplitudes for s cyclically ordered gluons. In
writing a recursion relation for An, one ‘‘marks’’ two of the
gluons and sums over products of subamplitudes, with r
external gluons on one side, n� r external gluons on the
other side, and one internal gluon connecting them, and
with the two marked or reference gluons being on opposite
sides. [The sum in (1) is really a sum over decompositions
with one marked gluon on each side, not just a sum over r.]
P is the momentum and h is the helicity of the internal
gluon. Momenta are shifted so that this gluon as well as the
external ones are on shell.

In [1], an outline of a proof of this formula was given by
using a recently discovered method for computing the one-
loop amplitude in N � 4 gauge theory [5] combined with
the IR behavior of the amplitudes.

However, the simplicity of the recursion relation (1)
begs for a more direct and transparent derivation. In par-
ticular, one suspects that there should be a derivation that
uses properties of tree amplitudes only, rather than deduc-
05=94(18)=181602(4)$23.00 18160
ing properties of tree amplitudes from properties of loop
amplitudes.

The aim of this Letter is to provide such a proof. The
proof uses only basic facts about tree diagrams, such as the
fact that their singularities come only from poles of internal
propagators, plus the description of tree amplitudes via
maximally helicity violating (MHV) diagrams [6], which
we use at one step in the proof to show that the tree
amplitudes vanish in a certain limit. (For one arrangement
of helicities, we also prove this directly from standard
Feynman diagrams.) The recursion relations of [1] use
two adjacent gluons of opposite helicity as reference glu-
ons. Our proof shows that the recursion relations can also
be defined for reference gluons of the same helicity, and
that the gluons do not have to be adjacent.

We conclude this Letter by using the BCF recursion
relations to show that MHV tree diagrams give the same
Yang-Mills tree amplitudes as Feynman diagrams.

2. Derivation of the BCF recursion relations.—Gluon
tree amplitudes are most conveniently written using the
spinor-helicity formalism [7–9]. In a nutshell, the idea is
that in four dimensions any null vector p can be written as a
bispinor, pa _a � �a

~�a. The inner product of vectors can be
written in terms of the natural inner product of spinors
h�; �0i � �ab�a�0b and �~�; ~�0� � � _a _b

~� _a ~�
_b. More explic-

itly, if qa _a � �0
a
~�0
_a, then 2p 	 q � h�; �0i�~�; ~�0�. It turns

out that polarization vectors also have a representation in
terms of spinors and the full amplitude becomes a rational
function of spinor products (for a review, see [10]).

Consider a tree-level amplitude A
1; 2; . . . ; n� 1; n� of
n cyclically ordered gluons, with any specified helicities.
Denote the momentum of the ith gluon by pi and the
corresponding spinors by �i and ~�i. Thus, pa _a

i � �a
i
~� _a
i .

In what follows, we single out two of the gluons for
special treatment. Using the cyclic symmetry, without any
loss of generality, we can take these to be gluons k and n.
Introduce a complex variable z, and let

pk
z� � �k
~�k � z~�n�; pn
z� � 
�n � z�k�~�n: (2)

We leave the momenta of the other gluons unchanged, so
ps
z� � ps for s � k; n. In effect, we have made the trans-
formation
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FIG. 1. A pictorial representation of the recursion relation (1).
The thick lines represent the two marked gluons. The sum is over
all cyclically ordered distributions of gluons with at least two
gluons on each subamplitude and over the two choices of helicity
for the internal gluon.
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~� k ! ~�k � z~�n; �n ! �n � z�k; (3)

with �k and ~�n fixed. Note that pk
z� and pn
z� are on
shell for all z, and pk
z� � pn
z� is independent of z. As a
result, we can define the following function of a complex
variable z:

A
z� � A�p1; . . . ; pk�1; pk
z�; pk�1; . . . ; pn�1; pn
z��:

(4)

The right-hand side is a physical, on shell amplitude for all
z. Momentum is conserved and all momenta are on shell.

For any z � 0, the deformation (2) does not make sense
for real momenta in Minkowski space, as it does not
respect the Minkowski space reality condition ~� � 
 ��.
However, (2) makes perfect sense for complex momenta or
(if z is real) for real momenta in signature ���� . In
any case, we think of A
z� as an auxiliary function. In the
end, all answers are given in terms of spinor inner products
and are valid for any signature. In the derivation of recur-
sion relations, it will be necessary to assume that the
helicities 
hk; hn� are 
�;��, 
�;��, or 
�;��. To get a
recursion relation in the remaining case (�;�), we use the
cyclic symmetry to exchange the roles of k and n, or
equivalently, we exchange the roles of � and ~� in (2).

A
z� is a rational function of z. To see this, note that the
original tree-level amplitude is a rational function of spinor
products, as we recalled above. Since the z dependence
enters only via the shift ~�k ! ~�k � z~�n and �n ! �n �
z�k, A
z� is clearly rational in z.

In fact, more specifically, for generic external momenta,
A
z� has only simple poles as a function of z. Singularities
come only from the poles of a propagator in a Feynman
diagram. As we will see, each propagator gives only a
single simple pole, and for generic external momenta,
distinct propagators give poles at distinct values of z.

To explain these statements, recall first that the momen-
tum flowing through a propagator in a tree diagram is
always a sum of external momenta. In Yang-Mills theory,
tree diagrams are planar, and the momentum in a propa-
gator is always a sum of momenta of adjacent external
particles, say Pij � pi � 	 	 	 � pj for some i; j with j > i.
A propagator with this momentum is 1=P2

ij. At nonzero z,
this becomes 1=Pij
z�

2 with Pij
z� � pi
z� � 	 	 	 � pj
z�.
In our problem, as ps is independent of z for s � k; n, and
pk
z� � pn
z� is independent of z, Pij
z� is completely
independent of z if both k and n or neither of them are in
the range from i to j. We consider the remaining cases that
one of k; n is in this range and the other is not. By
momentum conservation, we could replace pi � 	 	 	 � pj

by �
pj�1 � 	 	 	 � pi�1�. So there is no essential loss of
generality in assuming that n is in the range from i to j
while k is not. In this case, Pij
z� � Pij � z�k

~�n, so
Pij
z�2 � P2

ij � zh�kjPijj~�n� (where for any spinors �; ~�

and vector p, we define h�jpj ~�� � � pa _a�a ~� _a). Clearly
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then, the propagator 1=Pij
z�
2 has only a single, simple

pole, which is located at zij � P2
ij=h�kjPijj ~�n�. For generic

external momenta, the zij for distinct pairs i; j are distinct.
These poles are the only singularities of A
z�. So A
z�, as
claimed, has only simple poles [11].

In Sec. III, we use MHV tree diagrams to prove that A
z�
vanishes for z ! 1 as long as the helicities of particles k
and n are (�;�), (�;�), or (�;�). [As explained above,
in the remaining case, one should make a slight modifica-
tion of (2).] A rational function A
z� that vanishes at
infinity and whose only singularities are simple poles at
z � zij has an expansion

A
z� �
X

i;j

cij
z� zij

; (5)

where cij are the residues of the poles. From the above
discussion, the sum over i and j runs over all pairs such that
n is in the range from i to j while k is not.

The physical scattering amplitude that we want to cal-
culate is simply A � A
0�. In terms of the poles and
residues, it is

A � �
X

i;j

cij
zij

: (6)

This is obtained from (5) by setting z to zero in the
denominators without changing the numerators. As we
now see, this formula is equivalent to the BCF recursion
relation.

In fact, it is easy to describe the residue of the pole at
z � zij. To get a pole at P2

ij
z� � 0, a tree diagram must
contain a propagator that divides it into a ‘‘left’’ side, con-
taining all external gluons not in the range from i to j, and a
‘‘right’’ side, containing all external gluons that are in that
range; see Fig. 1. The internal line connecting the two parts
of the diagram has momentum Pij
z�, and we need to sum
over the helicity h � 
 at, say, the left of this line. (The
helicity at the other end is opposite.) The contribution of
such a diagram is 	hA

h
L
z�A

�h
R 
z�=Pij
z�

2, where Ah
L
z� and

A�h
R 
z� are the amplitudes on the left and the right with

indicated helicities. Since the denominator Pij
z�
2 is linear

in z, to obtain the function cij=
z� zij� that appears in (5),
we simply must set z equal to zij in the numerator. When
we do this, the internal line becomes on shell, and the
2-2
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numerator becomes a product Ah
L
zij�A

�h
R 
zij� of physical,

on shell scattering amplitudes.
The formula (5) for the function A
z� therefore becomes

A
z� �
X

i;j

X

h

Ah
L
zij�A

�h
R 
zij�

Pij
z�
2 : (7)

To get the physical scattering amplitude (6), we just need to
set z to zero in the denominator without touching the
numerator. Hence,

A �
X

i;j

X

h

Ah
L
zij�A

�h
R 
zij�

P2
ij

: (8)

This is the BCF recursion relation.
3. Vanishing at infinity and MHV diagrams.—In this

section, we complete the proof by showing that A
z� van-
ishes as z ! 1 if 
hk; hn� is equal to
�;��, 
�;��, or

�;��, or more simply if hn � � or hk � � .

The proof uses the MHV diagram construction of Yang-
Mills tree amplitudes [6]. In this construction, one com-
putes tree amplitudes from tree-level Feynman diagrams in
which the vertices are MHVamplitudes, continued off shell
in a suitable fashion, and the propagators are ordinary
Feynman propagators. We will present the argument as-
suming that hn � � , in which case we can make the
argument using ordinary (‘‘mostly plus’’) MHV vertices.
For hk � � , one makes the same argument using
Feynman diagrams with opposite helicity MHV vertices.

As a warmup, let us suppose that the n-gluon amplitude
of interest is actually an MHV amplitude. Then

A
z� �
h�r; �si

4


n
i�1h�i; �i�1i

; (9)

where �n depends on z as in (3), while the other �’s are
independent of z. In (9), r; s are the two gluons of negative
helicity; the others all have positive helicity. As long as
gluon n has � helicity, �n does not appear in the numerator
of A
z�, which therefore is independent of z. The denomi-
nator, on the other hand, is a nontrivial polynomial in z,
because of the factors h�n�1; �ni and h�n; �1i, at least one
of which (depending on k) has a nontrivial dependence on
z. Hence, if hn � � , An
z� ! 0 for z ! 1. This argu-
ment would clearly fail if gluon n had negative helicity.
[For an opposite helicity MHV amplitude, a similar argu-
ment shows that A
z� vanishes for large z if gluon k has
negative helicity.]

Now consider a general MHV tree diagram. Its contri-
bution to the scattering amplitude is a product of off shell
MHV tree amplitudes, times Feynman propagators 1=P2.
The propagators are independent of z or vanish for z ! 1;
in fact, their behavior was analyzed in Sec. II. It will
suffice, therefore, to show that the product of off shell
MHV tree amplitudes vanishes for z ! 1. The key point
is to show that if we set up the MHV tree diagrams
properly, the off shell continuation used to define the
18160
vertices does not spoil the behavior found in the last
paragraph.

A lightlike vector p has a factorization pa _a � �a
~� _a, but

there is no such factorization for a vector P that is not
lightlike. In defining MHV tree diagrams, one needs to
define a positive helicity spinor � associated with each
internal momentum P in a Feynman graph. To do this one
introduces an arbitrary and fixed negative chirality spinor
� and defines �a � Pa _a�

_a. The individual MHV tree
diagrams give amplitudes that depend on �, but the sum
does not [6].

In our present problem, it is extremely convenient to
pick � � ~�n. The point is that this causes � to be inde-
pendent of z for each internal gluon, a fact that we can
show as follows. Each internal momentum P is a sum pi �

pi�1 � 	 	 	 � pj, for some i and j. As in Sec. II, the z
dependence, if any, of such a sum is proportional to �k

~�n,
so if � � ~�n, then �a � Pa _a�

_a is independent of z for all
internal gluons. In this respect, the internal gluons are no
different from the external gluons other than gluon n.
Hence (with our choice of �), in an off shell MHV ampli-
tude that appears as a vertex in an MHV tree diagram, all
�’s except �n, whether associated with internal or external
gluons, are independent of z. With this at hand, the same
analysis we used for physical MHV tree amplitudes shows
that, with gluon n assumed to have positive helicity, the off
shell MHV vertex containing gluon n vanishes for z ! 1.
The other MHV vertices are clearly independent of z. So
the product of the MHV vertices vanishes for z ! 1, and
our argument is complete.

Analysis using standard Feynman diagrams.—This ar-
gument, though brief, raises the question of whether MHV
tree diagrams are essential or the same result can be
deduced from more standard methods. Here we give an
alternative argument based on ordinary Feynman diagrams
for the case that the helicities are 
hk; hn� � 
�;��.

Recall that any Feynman diagram contributing to the
amplitude A
z� is linear in the polarization vectors �a _a of
the external gluons. Polarization vectors of gluons of nega-
tive and positive helicity and momentum pa _a � �a

~� _a can
be written, respectively, as follows:

�
��
a _a �

�a ~� _a

�~�; ~��
; �
��

a _a �
�a

~� _a

h�; �i
; (10)

where � and ~� are fixed reference spinors.
Only the polarization vectors of gluons k and n can de-

pend on z. Consider the kth gluon first. Recall that �k does
not depend on z and ~�k
z� is linear in z. Since hk � � , it
follows from (10) that �
��

k goes as 1=z as z ! 1. A similar
argument leads to �
��

n � 1=z.
The remaining pieces in a Feynman graph are the propa-

gators and vertices. It is clear that the vanishing of A
z� as
z ! 1 can be spoiled only by the momenta from the cubic
2-3
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vertices, since the quartic vertices have no momentum
factors and the propagators can vanish only for z ! 1.

Let us now construct the most dangerous class of graphs
and show that they vanish precisely as 1=z. The z depen-
dence in a tree diagram ‘‘flows’’ from the kth gluon to the
nth gluon in a unique path of propagators. Each such
propagator contributes a factor of 1=z. If there are r such
propagators, the number of cubic vertices through which
the z dependent momentum flows is at most r� 1. (If all
vertices are cubic, then starting from the kth gluon, we find
a cubic vertex and then a propagator, and so on. The final
cubic vertex is then joined to the nth gluon.) So the vertices
and propagators give a factor that grows for large z at most
linearly in z. As the product of polarization vectors van-
ishes as 1=z2, it follows that for this helicity configuration,
A
z� vanishes as 1=z for z ! 1.

4. Proof of MHV recursion relations.—For the 
�;��
helicity pair, we have shown that the generalized amplitude
A
z� vanishes at infinity, and hence the BCF recursion
relations are obeyed, using either standard Feynman dia-
grams or the MHV tree diagrams.

It follows that the BCF relations for 
�;�� helicity are
satisfied for either the amplitudes computed using
Feynman diagrams or the amplitudes computed using
MHV tree diagrams. The 
�;�� relation is enough to
determine the amplitude recursively, given that the all �
and all � amplitudes vanish. Hence, the MHV tree dia-
grams give the same amplitudes as the Feynman diagrams.

In making this argument for the MHV tree diagrams, one
needs to know that MHV tree diagrams have only the
physical singularities of the Feynman diagrams. That the
physical singularities appear correctly was shown in Sec. 4
of [6]. Individual MHV tree diagrams have additional
unphysical singularities of the form 1=h�i; �Pi coming
from the MHV vertices. Here �i is the positive chirality
spinor of the ith external particle and �Pa � Pa _a�

_a is the
spinor associated with an off shell internal particle. These
unphysical singularities are located at non-Lorentz invari-
ant points in momentum space (namely, �a

i Pa _a�
_a � 0), so

they cancel by virtue of the proof of Lorentz invariance of
the sum of MHV tree diagrams given in Sec. 5 of [6].
Indeed, diagrams containing unphysical singularities ap-
pear in pairs, and they cancel by the pairwise cancellation
that was used in [6] to prove Eq. (5.17) of that Letter as part
of the proof of Lorentz invariance.

What does the comparison to the BCF recursion rela-
tions really add to this discussion? As we have already
noted, it was shown in [6] that the MHV tree diagrams
generate the same singularities as the Feynman diagrams.
(Cancellation of unphysical singularities, though it follows
from Lorentz invariance, was not stated explicitly.) Tree
amplitudes are completely determined by the singularities
they possess when analytically continued to complex mo-
menta. This statement can be proved by the following
18160
reasoning. Tree amplitudes are rational functions of the
spinor variables � and ~�. A rational function of complex
variables that has no singularities is a polynomial. Hence,
letting A denote a tree amplitude computed from Feynman
diagrams and ~A the corresponding amplitude from MHV
tree diagrams, if ~A has the correct singularities then A� ~A
is a polynomial. But on dimensional analysis, no such
polynomial is possible for Yang-Mills tree amplitudes
with n > 4 gluons (the dimension of an n gluon tree
amplitude is 4� n). For n � 4 gluons, the validity of the
MHV tree diagrams can be checked directly.

So the equality A � ~A essentially follows from the
analysis of singularities and Lorentz invariance in [6].
This approach has one drawback: while a tree amplitude
is determined by its singularities, there has been until now
in Yang-Mills theory no standard, convenient way to ac-
tually use the singularities to determine the amplitude.
What the BCF recursion relations give us is an extremely
convenient way to determine a Yang-Mills tree amplitude
from its singularities, making far more satisfying the proof
of validity of the MHV recipe based on knowledge of the
singularities.
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