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Experimental Test of the Fluctuation Theorem for a Driven Two-Level System
with Time-Dependent Rates
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A single defect center in diamond periodically excited by a laser is shown to provide a simple
realization for a system obeying a fluctuation theorem for nonthermal noise. The distribution of these
fluctuations is distinctly non-Gaussian, which has also been verified by numerical calculation. For driving
protocols symmetric under time reversal a more restricted form of the theorem holds, which is also known

from entropy fluctuations caused by thermal noise.
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Introduction. —Fluctuation theorems constitute a class
of exact results for nonequilibrium systems driven exter-
nally beyond the validity of linear-response regimes. Their
discovery during the last decade within quite different
approaches, the emerging classification, and the attempts
at experimental verification contribute to an exciting pe-
riod in nonequilibrium statistical mechanics. For a rough
classification, one should distinguish steady states from
time-dependent driving. For steady states, a fluctuation
relation first showed up in computer simulations of sheared
liquids as a surprisingly simple relation between the proba-
bility to observe a certain entropy production to that of
observing the corresponding entropy ‘‘consumption” [1].
This fluctuation theorem has later been derived for chaotic
and contracting deterministic dynamics [2,3], for driven
diffusive systems [4,5], for nonequilibrium chemical reac-
tions [6], and for a single enzyme or molecular motor [7].
For an experimental verification, a colloidal particle has
been dragged through a viscous fluid by a laser trap moving
with constant velocity [8,9].

For time-dependent driving, Jarzynski’s relation [10—
12] constrains a nonlinear average of the dissipated work
spent while driving a system from one equilibrium state to
another in a surrounding heat bath. Since this relation
allows us to extract free energy differences from nonequi-
librium data on the work, it has found widespread applica-
tions [13], in particular, in the analysis of mechanical
single molecule experiments and for corresponding simu-
lations [14-16]. For time-dependent transitions between
different steady states, Hatano and Sasa [17] have derived a
related expression for the dissipated heat involved in such a
transition which has been verified experimentally recently
by using again a colloidal particle in an optical tweezer
[18].

So far, the time-dependent relations refer typically to
transitions in thermal systems, where temperature and
exchanged heat are still reasonable concepts despite the
fact that the small system (biopolymer or colloidal particle)
is transiently in distinct nonequilibrium. A heat bath with a
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well-defined temperature providing thermal noise, how-
ever, is not crucial for this class of theorems. They essen-
tially derive from the behavior of the system under time
reversal [19] which can be defined for other dynamics as
well. In fact, for a stochastic dynamics using a master
equation with time-dependent rates, the corresponding
fluctuation theorem has recently been proven [20].

The purpose of this Letter is to test experimentally this
type of nonthermal fluctuation theorem in a strongly driven
system for the paradigmatic case of a two-level system
with time-dependent transition rates. Moreover, by choos-
ing a periodic driving function (or “protocol’’), the more
detailed fluctuation theorem for entropy fluctuations valid
for steady states is recovered for those specific discrete
values for the length of the trajectories where the periodic
protocol becomes invariant with respect to time reversal.
This observation shows that between steady states and
time-dependent transitions, an intermediate class is emerg-
ing for such symmetric protocols.

Fluctuation theorem for time-dependent rates.—Let a
transition between discrete states m and n occur with a rate
W,m(A), which depends on an externally controlled time-
dependent parameter A(7). The master equation for the
time-dependent probability p,(7) then reads

GL(T) = Z [Wmn()l)pm(T) - an(A)pil(T)]' (1)

arT m#n

For any fixed A, there is a steady state p3(A). If the system
is driven externally from A(0) to A(¢) according to a pro-
tocol A(7), with 0 < 7 < ¢, the fluctuation theorem derived
in [20] reads

<e—R[n(T)]> =1, (2)

where the average is taken over many realizations of length
¢ starting in the steady state corresponding to A(0). The
stochastic quantity R[n(7)] is related to the probability
P[n(7)] of such a trajectory under the protocol A(7) com-
pared to the probability P[7i(7)] for the reversed trajectory
fi(7) = n(t — 7) to occur under the reversed protocol
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A(T) = A(r — 7). It can be expressed as a(r) = ag[1 + yA(7)] (5)
_ Pln(n] o dlnpyo with

RUn(m)] = Ing oy = /o i —y @ A(7) = sin(arr/ty,), ©6)

The physical meaning of R becomes more transparent if
one considers the case of a system with energy levels E, (1)
and free energy F(A) driven in contact with a heat
bath at inverse temperature (. By choosing p$(A) =
exp{—B[E,(A) — F(A)]}, R becomes the dissipated work
BW, spent in the process. Therefore, Eq. (2) generalizes
the Jarzynski relation [10] to nonthermal systems.

Two-level system.—For an experimental demonstration
of the fluctuation theorem in a nonthermal system with
time-dependent rates we have chosen a single defect center
in natural Ila-type diamond (Drukker) excited by a red and
a green laser simultaneously. The defect is defined by its
optical properties (see Fig. 1), indicating that we are deal-
ing with a nickel-related center [21]. As explained in the
caption of Fig. 1, it is sufficient to consider the defect
center as an effective two-level system

0(dark) ? 1(bright) &)

with rates a = wg; and b = wy,,.

This system is driven out of the initial equilibrium by
modulating the intensity of the green laser with a sinusoi-
dal protocol A(7) with modulation period #,,,. This leads to
the time-dependent rate

green

@ kq

Y

dark state

?-é@kb

Y
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FIG. 1 (color online). This simple energy level scheme de-
scribes the observed optical properties of the defect center in
diamond as two coupled two-level systems (TLS). In the first
TLS, the center can be excited with a red light of wavelength
680 nm, responding with a Stokes shifted fluorescence of rate
k; ' = 5.5 ns. The second TLS is excited with a green light of
wavelength 514 nm and decays nonradiatively with rate k.
Since these nanosecond transitions are not resolved, the first
TLS appears as bright whereas the second TLS is dark.
Depending on the intensity of the red excitation light, the bright
TLS decays with another rate b into the dark TLS, from which it
can be pumped back with rate a using the green laser. The
transition rates a and b between the two TLSs are several orders
of magnitude smaller than k;, and k,; and depend linearly on the
intensities of the green (rate a) and red (rate b) laser, respec-
tively, (data not shown). Hence, it is sufficient to consider the
whole system as one effective TLS with a dark and a bright state.

where 0 <y <1 is the strength of the modulation. The
intensity of the red laser is constant and therefore b = b,,.
For fixed A, the system relaxes to the steady state

po(A) =1 = pi(d) = bo/[a(A) + byl )

which, for a two-level system, is necessarily an equilibrium
state.

The stochastic trajectory n(7) of the state occupied by
the system at time 7 consists of N consecutive jumps at
times 7; between state 0 and state 1, where 7, = 0 and
Ty+1 = t. In the ith interval 7; < 7 < 7,,,, the state is
denoted by n,. Inserting the steady state (7) into Eq. (3), the
functional along n(7) then becomes

N

_ a(tit1) a(t) + by
R[n(7)] = ,Z(‘)niln a(r) +In .

®)

The second term vanishes if we start and end the driving at
the same laser intensity.

Data acquisition and processing.—Single centers have
been addressed with a home-built confocal microscope
[22]. To illuminate the sample with red and green light at
the same time, we superimposed the stabilized beam of a
DCM dye laser (Coherent CR-699) operating at 680 nm
and the 514 nm line of an argon ion laser (Coherent Innova
300). The time-dependent sinusoidal protocol was realized
using a function generator controlled acousto-optical
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FIG. 2 (color online). Experimental test of the fluctuation
theorem (2). The main frame shows mean {exp(—R)) for trajec-
tories of length f, for three different parameter values:
(1) agl = 26 ms, bg‘ =31 ms, t, =50ms, y=0.07 for
1000 traces; (2) ag' =27 ms, by! =31 ms, t,, =50 ms, y =
0.14 for 1100 traces; (3) ay' = 64 ms, by'! =30 ms, t, =
20 ms, y = 0.23 for 4000 traces. The inset shows both the
modulated intensity of the green laser and the fluorescence signal
with the filtered trajectory n(7) of an example trace of experi-
ment (2).
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modulator. The fluorescence signal as well as the modu-
lated intensity of the green laser were detected with two
avalanche photodiodes. To carry out the actual experiment,
the data of the two detectors were acquired simultaneously
after starting the sinusoidal protocol. Following a certain
number of periods, the system was given 800 ms of relaxa-
tion time forming the unmodulated tail. The combination
of recorded modulation and subsequent relaxation will be
referred to as a fluorescence trace. Part of a trace is shown
in the inset of Fig. 2. The three experiments presented in
this Letter cover 1000, 1100, and 4000 of such traces.

In order to calculate R, one has to determine the rates.
The rate b, has been obtained from a histogram of the
lifetime of the bright state, which is unaffected by the
modulation. The offset of the transition rate a, in Eq. (5)
has been obtained from the lifetime of the dark state using
the unmodulated tail, ignoring the first 300 ms while the
system is still relaxing. The modulation strength 7y has
been calculated by fitting the green laser’s raw intensity
to a sine function. The calculation of R is now straightfor-
ward. By filtering the fluorescence signal we obtain a
binary trajectory n(7) for each trace, representing either
the dark or the bright state. The actual value of R is
calculated by inserting this trajectory n(7) and the rate
a(7) from Eq. (5) into Eq. (8).

Test of fluctuation theorem.—We distinguish moderate
driving from strong driving by comparing the intrinsic
relaxation time of the unmodulated system

t. = lag + bo] ™! ®)

with the modulation period t,,,. For the first two experi-
ments, £, = 14 ms compared to ¢,, = 50 ms means that the
system is only moderately driven into nonequilibrium. For
the third run, the modulation period is reduced to f, =
20 ms compared to a relaxation time ¢, = 20 ms. In this
case the modulation period and intrinsic relaxation time are
approximately equal, which corresponds to a strongly
driven system. Furthermore, this allows us to measure a
greater number of 4000 trajectories, thereby greatly im-
proving statistics. The experimental test of the fluctuation
theorem is shown in Fig. 2, where the average (e %) is
plotted as a function of the length ¢ of the trajectories,
which is in agreement with the theoretical expectation (2).
Probability distribution.—Insight into the statistical
properties is gained by looking directly at the probability
distribution P(R) of the quantity R. For the calculation of
this distribution, it is convenient to introduce the joint
probability p, = p,(R, 7), which is the probability of the
system to be in state n at time 7 and to have accumulated an
amount R up to this time. Starting from the master equation
(1), the time evolution of p, is then governed by the
differential Chapman-Kolmogorov equation [23-25]

. dlnp;, dp,

Py _
- + A

. 310

where Wor = —Woo — [l(’T) and Wio = — W11 = b(). Since
we start out of a steady state, the initial condition is
pn(R,0) = p5(0)8(R). In general, Eq. (10) must be solved
numerically. The distribution P(R, 7) can then be obtained
by adding the contributions of the final states, P(R, 7) =
po(R, 7) + py(R, 7).

For sufficiently slow driving, i.e., if the relaxation time ¢,
is much smaller than the modulation period ¢, the distri-
bution P(R) is a Gaussian [24]. For large ¢, our experimen-
tal results and numerical calculations indicate that P(R)
again is a Gaussian (data not shown). In the intermediate
regime of short trajectories and fast driving, the distribu-
tion P(R) shows distinctly non-Gaussian behavior with a
pronounced peak structure, as shown in Fig. 3. Here, we
compare experimentally obtained histograms for two dif-
ferent trajectory lengths to the basically exact numerical
solution.

The numerically obtained center peak and the four nar-
row side peaks can be resolved partially by the experimen-
tal histograms. These peaks can only be observed for short
trajectories, where there are at most a few jumps. The
center peak derives from trajectories which do not jump
within z. The positions of the other four peaks are at R =
*+In(1 = vy), independent of the driving frequency, which
demonstrates that this is not a resonance phenomena.
Rather, the explanation is as follows. Independent of the
probability density p(r;) to jump at 7;, the most probable
value of a is either near the maximum a = ay(1 + y) or
the minimum a = ay(1 — y), as can be seen by inverting
pla)da = p(a(7;))dr;. For a jump at those values of a, R
in Eq. (8) picks up a contribution = In(1 * 7) correspond-
ing to the location of the peaks. Therefore, these peaks are
a consequence of the discrete nature of the system and the
shape of the protocol A(7).

Symmetric protocols.—So far, we have discussed the
integral variant (2) of the fluctuation theorem which cor-
responds to the Jarzynski relation in this nonthermal sys-
tem. For particular protocols, which obey the symmetry
relation
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FIG. 3 (color online). Comparison of the numerically calcu-
lated probability distribution P(R) with the experimentally ob-
tained normalized histogram at times (a) 7= 60 ms and
(b) 7 =200 ms. (In both cases: a;' = 64 ms, by' = 30 ms,
tm = 20 ms, and y = 0.23.)
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FIG. 4 (color online). Test of the moment relation (13) for the
second (k = 2) and fourth (k = 4) moment. The plots show the
ratio (R*e™®)/(R¥) over trajectory length ¢ for z,, = 20 ms. At
the vertical dashed lines the protocol becomes symmetric; see
Eq. (11). (a) Experimental data; (b) numerical data. (Parameters
are as in Fig. 3.)

A7) = At — 1) = A7), (11)

adaptions of the arguments developed by Crooks [12] show
that then the distribution P(R) obeys even the stronger
fluctuation theorem

P(—R)/P(R) = e R (12)

also valid in steady states [1-7]. This relation implies, in
particular, an intriguing condition on the kth moment

(Rte™®) = (—=1XR"). 13)

In Fig. 4, we show the ratio between the two sides of this
relation as a function of the length ¢ of the trajectory. The
theoretically calculated curves show clearly that the mo-
ment relation is valid for symmetric protocols, i.e., for t =
It,, where [ = 1/2,3/2,5/2,.... For other values of ¢ the
relations (12) and (13) do not hold. The oscillations of the
ratio are damped and hence the moment relation will
become valid for all ¢ in the limit # — oo. Even though
the experimental data are somewhat noisy, they also illus-
trate this particular feature of a symmetric protocol which
is a consequence of the fluctuation theorem (12).
Concluding perspective.—In summary, we have tested
an integral fluctuation theorem (2) for time-dependent
driving in a nonthermal environment by using a two-level
system. The distributions P(R) are distinctly non-
Gaussian, which emphasizes the strong nonlinear character
of this system. If the periodic protocol becomes symmetric
under time reversal, besides the integral form of the fluc-
tuation theorem the more detailed Gallavotti-Cohen sym-
metry relation (12) is valid as well. In this sense, symmetric
protocols cover an intermediate class between steady states
and time-dependent driving. We have verified this symme-
try relation numerically and tested it experimentally by
checking the corresponding moment relations. While a

two-state system may arguably serve as paradigm for the
simplest system conceivable for time-dependent driving,
studying a simple three-state system will become impor-
tant in the future as well. Whereas in two-state systems for
constant rates detailed balance is necessarily fulfilled, a
three-state system could sustain a steady state at constant
driving which violates detailed balance. Ramifications of
the fluctuation theorems depending on this aspect would
then become accessible to experimental scrutiny.
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