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We present a unified approach to quantum error correction, called operator quantum error correction.
Our scheme relies on a generalized notion of a noiseless subsystem that is investigated here. By combining
the active error correction with this generalized noiseless subsystems method, we arrive at a unified
approach which incorporates the known techniques—i.e., the standard error correction model, the method
of decoherence-free subspaces, and the noiseless subsystem method—as special cases. Moreover, we
demonstrate that the quantum error correction condition from the standard model is a necessary condition
for all known methods of quantum error correction.
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The possibility of protecting quantum information
against undesirable noise has been a major breakthrough
for the field of quantum computing, opening the path to
potential practical applications. In this Letter, we show that
the various techniques used to protect quantum information
all fall under the same unified umbrella. First, we review
the standard model for quantum error correction [1,2] and
the passive error prevention methods of ‘‘decoherence-free
subspaces’’ [3–5] and ‘‘noiseless subsystems’’ [6–8]. We
then demonstrate how the latter scheme admits a natural
generalization and study the necessary and sufficient con-
ditions leading to such generalized noiseless subsystems.
This generalized method in turn motivates a unified ap-
proach—called operator quantum error correction—that
incorporates all aforementioned techniques as special
cases. We describe this approach and discuss testable con-
ditions that characterize when error correction is possible
given a noise model. Moreover, we show that the standard
error correction condition is a prerequisite for any of the
known forms of error correction or prevention to be
feasible.

The standard model.—What could be called the ‘‘stan-
dard model’’ for quantum error correction [1,2] consists of
a triple �R; E;C� where C is a subspace, a quantum code,
of a Hilbert space H associated with a given quantum
system. The error E and recovery R are quantum opera-
tions on B�H �, the set of operators on H , such that R
undoes the effects of E on C in the following sense:

�R � E���� � � for all � � PC�PC; (1)

where PC is the projector of H onto C. As a prelude to
what follows below, let us note that instead of focusing on
the subspace C, we could just as easily work with the set of
operators B�C� which act on C.

When there exists such an R for a given pair E;C, the
subspace C is said to be correctable for E. The action of the
noise operation E can be described in an operator-sum
representation as E��� �

P
aEa�E

y
a . While this decompo-
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sition is not unique, all decompositions of a given map E
are linearly related: if E��� �

P
bFb�F

y
b , then there exists

scalars uba such that Fb �
P
aubaEa. We shall identify the

map E with any of its error operators E � fEag. The
existence of a recovery operation R of E on C may be
cleanly phrased in terms of the fEag as follows [1,2]:

PCE
y
aEbPC � 	abPC for all a; b (2)

for some scalars 	ab. Clearly, this condition is independent
of the operator-sum representation of E. We note that
Eq. (2) is captured as the special case of our Theorem 2
with m � 1 � dimH A.

Noiseless subsystems and decoherence-free sub-
spaces.—Let E : B�H � ! B�H � be a quantum operation
with errors fEag. The algebra A generated by the set
fEa; E

y
a g is a y algebra [9], called the interaction algebra,

and as such it is unitarily equivalent to a direct sum of
(possibly ‘‘ampliated’’ [9]) full matrix algebras: A 	L

JMmJ

 1nJ : This structure induces a natural decompo-

sition of the Hilbert space

H �
M
J

H A
J 
H B

J ;

where the ‘‘noisy subsystems’’ H A
J have dimension mJ

and the ‘‘noiseless subsystems’’ H B
J have dimension nJ.

If E is a unital quantum operation, by which we mean
that the maximally mixed state 1 remains unaffected by E
[i.e., E�1� � 1], then the fundamental noiseless subsystem
(NS) method of quantum error correction [6–8] may be
applied. This method makes use of the operator algebra
structure of the ‘‘noise commutant,’’

A 0 � f� 2 B�H � : E� � �E 8 E 2 fEa; E
y
a gg;

to encode states that are immune to the errors of E. As such,
it is in effect a method of error prevention. Notice that with
the structure of A given above, the noise commutant is
unitarily equivalent to A0 	 �J1mJ


MnJ .
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In [10,11] it was proved that for unital E, the noise
commutant coincides with the fixed point set for E; i.e.,

A 0 � Fix�E� � f� 2 B�H � : E��� � �g:

This is precisely the reason that A0 may be used to
produce NS for unital E. We note that while many of the
physical noise models satisfy the unital constraint, there
are important nonunital models as well. Below we show
how shifting the focus from A0 to Fix�E� (and related sets)
quite naturally leads to a generalized notion of NS that
applies to nonunital quantum operations as well.

For brevity, we focus on the case where information is
encoded in a single noiseless sector of B�H �, so

H � �H A 
HB� �K

with dim�H A� � m, dim�H B� � n, and dimK �
dimH �mn. The generalization to multiple J’s is
straightforward. We shall write �A for operators in
B�H A� and �B for operators in B�H B�. Thus the restric-
tion of the noise commutant A0 to H A 
H B consists of
the operators of the form �AB � 1A 
 �B where 1A is the
identity element of B�H A�. It is easy to see that such
states are immune to noise in the unital case.

For notational purposes, assume that ordered orthonor-
mal bases have been chosen for H A � spanfj�iigmi�1 and
H B � spanfj�kignk�1 that yield the matrix representation
of the corresponding subalgebra of A0 as 1n 
Mn. We let
fPkl � j�kih�lj 
 1n : 1 � k; l � mg denote the corre-
sponding family of ‘‘matrix units’’ associated with this
decomposition. In terms of these matrix units, the minimal
reducing projectors for A0 are given by Pk � j�kih�kj 

1n � Pkk 2 A. The following equalities are readily veri-
fied and, in fact, are the defining properties for a family of
matrix units.

Pkl � PkPklPl 8 1 � k; l � m;

Py
kl � Plk 8 1 � k; l � m;

PklPl0k0 �
�
Pkk0 if l � l0

0 if l � l0
:

With these properties in hand, the following useful result
may be easily proved.

Lemma 1 The map 
 � fPklg from B�H � to itself
satisfies the following two properties:


��� �
X
k;l

Pkl�P
y
kl 2 A0; 
��A 
 �B� / 1A 
 �B;

for all operators �A, �B, and � 2 B�H �.
We note that the NS method contains the method of

decoherence-free subspaces (DFS) [3–5] as a special case.
Specifically, if we are given an error operation E, then the
DFS method encodes information in a subspace of the
system’s Hilbert space that is immune to the evolution.
However, instead of working at the level of vectors, we
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could work at the level of operators. In particular, as in the
standard model, we may identify a given Hilbert space H
with the full algebra B�H � of operators acting on H . In
doing so, the DFS method may be regarded as a special
case of the NS method in the sense that the DFS method in
effect makes use of the ‘‘unampliated’’ summands, 1mJ




MnJ where mJ � 1, inside the noise commutant A0 for
encoding information.

Generalized noiseless subsystems.—We now describe a
generalized notion of noiseless subsystems that serves as a
building block for the unified approach to error correction
discussed below and applies equally well to nonunital
maps. In the standard NS method, the quantum information
is encoded in �B, i.e., the state of the noiseless subsystem.
Hence, it is not necessary for the noisy subsystem to
remain in the maximally mixed state 1A under E; it could
in principle get mapped to any other state.

In order to formalize this idea, define for a fixed decom-
position H � �H A 
H B� �K the set of operators

A � f�2B�H � : �� �A 
 �B; for some �A and �Bg:

Notice that this set has the structure of a semigroup and
includes operator algebras such as 1A 
B�H B�. For nota-
tional purposes, we assume that bases have been chosen
and define the matrix units Pkl as above, so that Pk � Pkk,
PA � P1 � � � � � Pm, PAH � H A 
H B, P?

A �

1 � PA, and P?
AH � K. We also define a map PA by

the action PA��� � PA���PA. The following result leads to
our generalized definition of NS.

Lemma 2 Given a fixed decomposition H �
H A 
H B �K and a map E, the following three
conditions are equivalent, and are the defining prop-
erties of the generalized noiseless subsystem H B.

(i) 8 �A; �B 9 �A : E��A 
 �B� � �A 
 �B.
(ii) 8 �B 9 �A : E�1A 
 �B� � �A 
 �B.
(iii) 8 � 2 A : �TrA � PA � E���� � TrA���.
Proof. The implications �i� ) �ii� and �i� ) �iii� are

trivial. To prove �ii� ) �i�, observe that
Pm
k�1 j�kih�kj �

1A, so condition (ii) implies that for any j i 2 H B,

Xm
k�1

E�j�kih�kj 
 j ih j� � �A 
 j ih j (3)

for some �A 2 B�H A�. Since E is a quantum operation,
� ;k � E�j�kih�kj 
 j ih j� are positive for k � 1; . . . ; m.
Equation (3) implies that �A 
 j ih j is a convex combi-
nation of the operators � ;k, which is possible only if
� ;k � �A ;k 
 j ih j for some positive �A ;k. Through an
application of the Stinespring dilation theorem [12] and a
linearity argument, it follows that �A ;k does not depend on
 . Since the basis fj�kig and the state j i were chosen
arbitrarily, the result now follows from the linearity of E.

To prove �iii� ) �ii�, note that since E and TrB are trace
preserving, (iii) implies that �PA � E���� � E��� for all
� 2 A. By setting � � 1A 
 j ih j as above, we conclude
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from (iii) that E��� � �A 
 j ih j for some �A. The rest
follows from linearity. �

The subsystem H B is said to be noiseless when it
satisfies one—and hence all—of the conditions in
Lemma 2. It is clear from the third condition that the fate
of the noisy subsystem H A has no importance: only the
information stored in the noiseless subsystem H B must
be preserved by E. Note that the generalized definition of
NS coincides with the standard definition when
dim�H A� � 1. Hence, the notion of DFS is not altered
by this generalization.

Given this new notion of a NS, the crucial question is to
determine what are the necessary and sufficient conditions
for a map E � fEag to admit a NS described by a semi-
group A. Recall that the condition expressed by Eq. (2)
gives an answer for standard error correction. The follow-
ing theorem provides an answer to this question in the
general noiseless subsystem setting.

Theorem 1 Let E � fEag be a quantum operation on
B�H � and let A be a semigroup in B�H � as above. Then
A encodes a noiseless subsystem (decoherence-free sub-
space in the case m � 1)—as defined by any of the three
conditions of Lemma 2—if and only if the following two
conditions hold:

PkEaPl � 	aklPkl for all a; k; l (4)

for some set of scalars f	aklg and

P?
AEaPA � 0 for all a: (5)

Proof. To prove the necessity of Eqs. (4) and (5), note
that Lemma 1 and Lemma 2 imply

�
 � E � 
���� / 
��� for all � 2 B�H �: (6)

By linearity, the proportionality factor cannot depend on �,
so the sets of operators fPkiEaPjlg and f	Pk0l0 g define the
same map for some scalar 	. We may thus find a set of
scalars �kiajl;k0l0 such that

PkiEaPjl �
X
k0l0
�kiajl;k0l0Pk0l0 : (7)

Multiplying both sides of this equality on the right by Pl
and on the left byPk, we see that�ijakl;i0l0 � 0 when k � k0

or l � l0. This implies Eq. (4) with 	akl � �kkall;kl.
For the second condition, note that by definition

P?
A�P

?
A � 0 for all � 2 A. Together with Lemma 1 and

Lemma 2, this implies P?
AE�
����P

?
A � 0 for all � 2

B�H �. Equation (5) follows from this observation via a
consideration of the operator-sum representation for E.

To prove sufficiency, we use the definitions 1 � PA �

P?
A and PA �

Pm
k�1 Pk to establish for all � 2 A
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E ��� � �PA � P?
A�
X
a

Ea�E
y
a �PA � P?

A�

�
X
a

PAEa�E
y
aPA �

X
a;k;k0

PkEa�E
y
aPk0 :

Given � � �A 
 �B 2 A, we have

�A 
 �B � PA��
A 
 �B�PA �

X
l;l0
Pl��

A 
 �B�Pl0 :

Combining this with the above identity implies

E ��A 
 �B� �
X

a;k;k0;l;l0
PkEaPl��

A 
 �B�Pl0E
y
aPk0

�
X

a;k;k0;l;l0
	akl	ak0l0Pkl��A 
 �B�Pl0k0 :

The proof now follows from the fact that the matrix units
Pkl act trivially on the B�H B� sector. �

Conditions Eqs. (4) and (5) do not necessarily imply that
the noiseless operators are in the commutant of the inter-
action algebra A � fEag since PAEaP

?
A is not necessarily

equal to zero. Hence, this generalization does, indeed,
admit new possibilities.

The unified approach.—The unified scheme for quantum
error correction consists of a triple �R; E;A� where again
R and E are quantum operations on some B�H �, but now
A is a semigroup in B�H � defined as above with respect to
a fixed decomposition H � �H A 
H B� �K. Given
such a triple �R; E;A� we say that A is correctable for E if

�TrA � PA �R � E���� � TrA��� for all � 2 A: (8)

In other words, �R; E;A� is a correctable triple if the
H B sector of the semigroup A encodes a noiseless sub-
system of the error map R � E. Thus, substituting E by
R � E in Lemma 2 offers alternative equivalent definitions
of a correctable triple. Observe that the standard model for
error correction is given by the particular case in this model
that occurs when m � 1. Lemma 2 shows that the gener-
alized (and standard) NS and DFS methods are captured in
this model when R � id is the identity channel and,
respectively, m � 1 and m � 1.

We next present a mathematical condition that charac-
terizes correctable codes for a given channel E in terms of
its error operators and generalizes Eq. (2) for the standard
model. Again, we assume that matrix units Pkl associated
with the noise commutant have been defined as above.

Theorem 2 Let E � fEag be a quantum operation on
B�H � and let A be a semigroup in B�H � as above. If A is
correctable for E [see Eq. (8)], then there are scalars � �
f	abklg such that

PkE
y
aEbPl � 	abklPkl for all a; b; k; l: (9)

Proof. As noted above �R; E;A� being a correctable
triple implies that A encodes a generalized noiseless sub-
system of the map R � E. Applying Theorem 1, and, in
particular, condition Eq. (4), to the map R � E implies the
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existence of a set of scalars �cakl for which PkRcEaPl �
�caklPkl. It now follows from Eq. (5) applied to the map
R � E and PA �

P
jPj that

PkE
y
aEbPl �

X
c

Py
kE

y
aR

y
cRcEbPl

�
X
c;j

Py
kE

y
aR

y
cP

y
j PjRcEbPl

�
X
c;j

�cajk�cbjlP
y
jkPjl �

�X
c;j

�cajk�cbjl

�
Pkl;

and this completes the proof of the Theorem. �
Remark 1 The condition Eq. (9) is independent of the

choice of basis fj�iig that defines the family Pkl and of the
operator-sum representation of E. In particular, under the
changes j�0

ki �
P
luklj�li and Fa �

P
bwabEb, the sca-

lars � change to 	0abkl �
P
a0b0k0l0ukk0ul0lwaa0wbb0	abkl.

Equation (9) generalizes the quantum error correction
condition Eq. (2) to the case where information is encoded
in operators, not necessarily restricted to act on a fixed
code subspace C. However, observe that setting k � l in
Eq. (9) gives the standard error correction condition Eq. (2)
with PC � Pk. This leads to the following result.

Theorem 3 If �R; E;A� is a correctable triple for some
semigroup A defined as above, then �P k �R; E; PkAPk� is
a correctable triple according to the standard definition
Eq. (2), where Pk is any minimal reducing projector of A,
and the map P k is defined by P k��� �

P
lPkl���P

y
kl.

Proof. The error correction condition Eq. (8) and
Lemma 2 imply that for all �B there is a �A such that

�R � E��Pk�1A 
 �B�Pk� / �A 
 �B:

Observe that P k��A 
 �B� / j�kih�kj 
 �B for all �B and
�A. Combining these two observations, we conclude that

�P k �R � E��Pk�1
A 
 �B�Pk� / Pk�1

A 
 �B�Pk;

completing the proof. �
Theorem 3 has important consequences. Given a map E,

the existence of a correctable code subspace C—captured
by the standard error correction condition Eq. (2)—is a
prerequisite to the existence of any known type of error
correction or prevention scheme (including the general-
izations introduced in this Letter). Moreover, Theorem 3
shows how to transform any one of these error correction or
prevention techniques into a standard error correction
scheme.
18050
Finally, note that Theorem 2 sets necessary conditions
for the possibility of operator quantum error corrections,
but does not address sufficiency. At the time of writing, we
have not proved sufficiency in full generality. We have,
however, demonstrated that these conditions are sufficient
for a number of motivating special cases. This topic will be
discussed in an upcoming paper.

Conclusion.—We have presented a general model for
quantum error correction, called operator quantum error
correction, that unifies the fundamental paradigms. In
doing so, we have generalized the method of active error
correction by implementing the condition at the level of
operators rather than subspaces. We have also generalized
the notion of noiseless subsystems by relaxing the con-
straints imposed on the ‘‘noisy’’ sector of the algebra, i.e.,
that it remains in the maximally mixed state. In addition,
we have demonstrated that the standard error condition
Eq. (2) is a necessary condition for any type of error
correction—either passive or active—to be possible, and
we have shown how to convert any such scheme into a
standard error correction protocol.
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