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We study the voter model on heterogeneous graphs. We exploit the nonconservation of the magneti-
zation to characterize how consensus is reached. For a network of N nodes with an arbitrary but
uncorrelated degree distribution, the mean time to reach consensus TN scales as N�2

1=�2, where �k is
the kth moment of the degree distribution. For a power-law degree distribution nk � k��, TN thus scales as
N for � > 3, as N= lnN for � � 3, as N�2��4�=���1� for 2< �< 3, as �lnN�2 for � � 2, and as O�1� for
� < 2. These results agree with simulation data for networks with both uncorrelated and correlated node
degrees.
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FIG. 1 (color online). The complete bipartite graph Ka;b.
In this Letter we study the voter model [1] on heteroge-
neous networks and show that its behavior is dramatically
different from that on regular lattices. Many recent studies
of basic statistical mechanical models on heterogeneous
graphs have begun to elucidate how the dispersity in node
degree (the number of links attached to a node) affects
critical behavior. A representative but incomplete set of
examples include percolation [2], the Ising model [3–7],
diffusion and random walks [8–11], as well as the voter
model itself [12–15].

The voter model is perhaps the simplest and most com-
pletely solved example of cooperative behavior. For these
reasons, our analytical predictions for the voter model on
heterogeneous networks should provide new insights into
the role of underlying heterogeneity on dynamical coop-
erative behavior. In the model, each node of a graph is
endowed with two states—spin up and spin down. The
evolution consists of (i) picking a random voter; (ii) the
selected voter adopts the state of a randomly chosen
neighbor. These steps are repeated until a finite system
necessarily reaches consensus.

One basic property of the voter model is the exit proba-
bility, namely, the probability that the system ends with all
spins up, E���0�, as a function of the initial density of up
spins �0. Because the mean magnetization (averaged over
all realizations and all histories) is conserved on regular
lattices, and because the only possible final states are
consensus, E���0� � �0 [1]. A second basic property is
the mean time to reach consensus, TN . For regular lattices
in d dimensions, it is known that TN scales with the number
of nodes N as N2 in d � 1, as N lnN in d � 2, and as N in
d > 2 [1,16]. For heterogeneous networks, we find that TN
grows as N�2

1=�2, where �k is the kth moment of the
degree distribution of the network [Eq. (14)]. In contrast to
lattice systems, the N dependence of TN can be sublinear.

To understand how dispersity in node degree affects
voter model dynamics, we first examine the illustrative
example of the complete bipartite graph. We then extend
this approach to determine the behavior of the voter model
on networks with power-law degree distributions, but with
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no correlations between node degrees. Finally, we validate
our theoretical results by simulations of the voter model on
networks with power-law degree distributions, both with
and without node degree correlations.

Consider the voter model on the complete bipartite
graph Ka;b of N � a� b nodes that are partitioned into
two subgraphs a and b (Fig. 1). Each node in the a sub-
graph is connected to all nodes in the b subgraph, and vice
versa. Let Na;b be the respective number of up spins on
each subgraph. In an update event, these numbers change
according to
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For dNa, the gain term accounts for flipping a down spin in
subgraph a due to its interaction with an up spin in b, while
the loss term accounts for flipping an up spin in subgraph a.
The second equation accounts for the evolution of Nb.
Since the time increment for an event is proportional to
1=�a� b�, the subgraph densities �a � Na=a and �b �
Nb=b obey _�a;b � �b;a � �a;b, with solution

�a;b�t� �
1

2
��a;b�0� � �b;a�0��e�2t �

1

2
��a�0� � �b�0��:

(2)

While the sum of the subgraph densities �a � �b is
conserved, the magnetization m � �a�a � b�b�=�a� b�
is not [14]. However, the bias in the rate equations for �a
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FIG. 2 (color online). Trajectories of �6�t� (degree less than
�1 � 8) and �11�t� (degree greater than �1) versus !, for one
realization of the voter model on a network of 2 105 nodes,
with degree distribution nk � k�2:5. The initial state is
��k>�1

�0�; �k��1
�0�� � �0; 1�. The dotted curves are the initial

transient for t & 1, after which diffusive motion leads to con-
sensus at �1; 1�.
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and �b drive the subgraph densities to the common value
�a;b�1� � 1

2 ��a�0� � �b�0�� and magnetization conserva-
tion is restored as this final state is approached. It also bears
mentioning that the magnetization itself is conserved if the
update rule is link based [14].

Since �a � �b is conserved, the sum of the subgraph
densities in the final state equals 2 with probability E�.
Thus the exit probability is

E� �
1

2
��a�0� � �b�0��: (3)

When the initial spins on the two subgraphs are oppositely
oriented, there is an equal probability of ending with all
spins up or all spins down, independent of the subgraph
sizes. In the extreme case of the star graph Ka;1, with
a 
 1 up spins at the periphery and a single down spin
at the center, there is only a 50% chance that the system
ends with all spins up.

We now study the mean time until consensus
TN��a; �b�—either all spins up or all spins down—as a
function of N, �a, and �b. This consensus time satisfies the
recursion formula [17,18]:
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where �t � 1=�a� b� � 1=N is the time step for a single
spin-flip attempt. For example, the first term (a shorthand
for two contributions) accounts for flipping a down (up)
spin in subgraph a so that �a ! �a �

1
a . The probability

for flipping a down spin in subgraph a is P��a; �b ! �a �
1
a ; �b� �

a
a�b �1� �a��b, where a

a�b �1� �a� is the proba-
bility to choose a down spin in subgraph a and �b is the
probability to choose an up spin in subgraph b. This
equation is subject to the boundary conditions TN�0; 0� �
TN�1; 1� � 0.

Expanding this recursion formula to second order, we
find, after straightforward algebra,

N�t���a��b��@a�@b�TN��a;�b�
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where @i denotes a partial derivative with respect to �i. The
first term on the right accounts for a convection that drives
the system to equal subgraph magnetizations in a time of
order one. Subsequently, diffusive fluctuations govern the
ultimate approach to consensus (see Fig. 2). We thus
compute the consensus time by replacing the subgraph
17870
densities �a and �b by their common value �. In so doing,
we ignore the initial transient for t�O�1�, during which
the subgraph densities are unequal. We also transform the
derivatives with respect to �a and �b in Eq. (5) to deriva-
tive with respect to � to yield
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�
1
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�

1

b

�
@2TN � �1; (6)

with solution

TN��� � �
4ab
a� b

��1� �� ln�1� �� � � ln��: (7)

Notice that if a � O�1� and b � O�N� (star graph), the
consensus time TN �O�1�, while if both a and b are O�N�,
then TN �O�N�, as on a complete graph.

We now extend this approach to graphs with arbitrary
degree distributions but without degree correlations; i.e.,
we treat all nodes with the same degree as equivalent [19].
We define �k as the density of up spins in the subset of
nodes of degree k. Similar to Eq. (4), the recursion for the
mean consensus time on a heterogeneous graph, with
initial densities f�kg, is

TN�f�kg� �
X
k

P�k;� ! ���TN��k � �k� � �t�

�
X
k

Q�f�kg��TN�f�kg� � �t�; (8)

where P�k;� ! �� is the probability that a spin down (or
up) on a node of degree k flips in an update, Q is the
probability of no flip, and �k � 1=�Nnk� is the change in
�k when a spin flip occurs at a site of degree k. Here nk is
the fraction of sites with degree k.

Since the probability of choosing a node is 1=N, the
spin-flip probability may be written as
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where Axy is the adjacency matrix element between nodes x
and y (Axy � 1 if x and y are connected and Axy � 0
otherwise). Thus the second sum is the probability that a
node x with degree k chooses a neighbor with spin up (or
down). Under the mean-field assumption that neighboring
node degrees are uncorrelated, we write Axy as kxky=�1N,
where �1 �

P
kknk is the mean node degree for the graph.

That is, we replace Axy by the probability that an edge
between node x of degree kx and node y of degree ky exists.
Then the second sum in Eq. (9) for spin up and spin down
simplifies, respectively, to
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Namely, we decompose the nodes y according to their
degree, and we define ! as the average degree-weighted
density of up spins. In this formulation, each spin of given
sign flips with the same probability that is a function of
the degree-weighted magnetization rather than of the
global magnetization, as in the case for degree-regular
graphs. Since the first sum in Eq. (9) gives the density of
down (or up) spin in the subset of nodes with degree k, we
now write P�k;� ! �� � nk!�1� �k�, and similarly,
P�k;� ! �� � nk�1�!��k. Finally, the probability
that there is no change in a single spin-flip attempt is
Q�f�g� � 1�

P
k�P�k;� ! �� � P�k;� ! ���.

These simplifications enable us to write Eq. (8) as

��t�
X
k

nk�!�1��k��T��k��k��T�f�kg���

�
X
k

nk��1�!��k�T��k��k��T�f�kg���: (10)

Expanding this recursion to second order we obtain

N�t�
X
k

��k�!�@kT�
X
k

�!��k�2!�k�

2Nnk
@2kT; (11)

where @k denotes the partial derivative with respect to �k.
The convective terms on the right-hand side again drive the
system to the state where �k is equal to the weighted
magnetization ! for all k.

To check this convective behavior, we followed the
evolution of single realizations of the voter model on
scale-free graphs with degree distribution nk / k�2:5 and
mean degree �1 � 8 generated according to the Molloy-
Reed (MR) model [20]. Each node is assigned a random
number of stubs k that is drawn from a specified degree
distribution. Pairs of unlinked stubs are then randomly
joined. This construction eliminates degree correlations
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between neighboring nodes. For the initial state, we assign
all nodes with degree larger than �1 as spin down and all
remaining nodes as spin up. A plot of the spin up densities
�6 and �11 for nodes of degrees 6 and 11 versus the degree-
weighted up-spin density shows that these ‘‘subgraph’’
densities quickly approach equal values (Fig. 2). Analo-
gous behavior occurs on the bipartite graph and on scale-
free networks with degree correlations.

For long times, we thus drop the convective terms and
set �k � ! 8 k. Concomitantly, we transform the partial
derivatives with respect to k to derivatives with respect to
! by using @k! � nkk=�1 to reduce (11) to

1
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X
k
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�2
1

nk

�
!�1�!�@2!T � �1: (12)

Since
P

kk
2nk � �2, the second moment of the degree

distribution, this equation can be reduced to a similar
form to (6), with solution

TN�!� � �N
�2

1

�2
��1�!� ln�1�!� �! ln!�: (13)

For a scale-free network [21] with degree distribution
nk � k��, the mth moment is �m �

R
kmax kmnkdk. Here

kmax � N1=���1� is the maximal degree in a finite network
of N nodes; this is obtained from the extremal conditionR
kmax

k��dk � N�1 [22]. Thus the second moment di-
verges at the upper limit for � � 3 while the first moment
diverges for � � 2.

Assembling the results for the moments, the mean con-
sensus time on a scale-free graph has the N dependence

TN �

8>>>>><
>>>>>:

N �> 3;
N= lnN � � 3;
N�2��4�=���1� 2< �< 3;
�lnN�2 � � 2;
O�1� � < 2:

(14)

The prediction TN � N= lnN for � � 3 may explain the
apparent power law TN � N0:88 reported in a previous
simulation of the voter model on such a network [14].

To test our predictions, we simulated the voter model on
the MR network [20] and on the growing network with
redirection (GNR) [23]. The GNR is built by adding nodes
sequentially, where each new node attaches either to a
randomly selected node with probability 1� r or to the
ancestor of this target with probability r. We chose the out
degree of each node to be 4, and redirection was applied to
each outgoing link of the new node. This construction
gives a network with a power-law degree distribution nk /
k��, with � � 1� 1

r in the range �2;1� as r is varied
between 0 and 1.

Figure 3 shows the N dependence of TN for representa-
tive values of the degree exponent � for both the MR
network and the GNR. The results for the two networks
with the same � are extremely close, suggesting that degree
correlations have a small effect on voter model dynamics.
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FIG. 3 (color online). Consensus time TN versus N on scale-
free Molloy-Reed networks with degree distribution nk � k��

for � � 2:3 ( � ), 2.5 (  ), and 2.7 ( � ). Also shown are
corresponding results for the GNR (open symbols). Only every
second data point is shown. The data are all based on 10 graph
realizations, each with 100 voter model realizations. The lines
are the expected asymptotic slopes from Eq. (14).
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There is also curvature in the data that originate from
finite-N effects. Using the maximal degree kmax �

N1=���1� in the definition of the moments ultimately leads
to the exponent for TN being modified by the corrections,
for � between 2 and 3,

d lnT
d lnN

�
2�� 4

�� 1
�1� aN�2���=���1� � bN���3�=���1��;

(15)

where a and b are of order 1.
For � close to 2 or 3, the leading correction term decays

slowly in N, causing a discrepancy between our numerics
and the theory. For example, for � � 2:3 in Fig. 3, the
numerical best-fit slope to the data decreases from 0.53 to
0.48 as we successively eliminate the first 18 data points.
This accords well with the theoretical prediction of 0.46 for
the slope from Eq. (14). For � � 2:5, the two correction
terms both decay at the same rate and have opposite sign.
Here we may expect the smallest corrections, as borne out
by the data— the best-fit slope decreases from 0.680 to
0.671 as the first 18 data points are deleted, while the
theoretical prediction for the slope is 2=3. The case � �
2:7 has the slowest-decaying correction term and here we
observe the largest deviation between simulation and the-
ory— the slope remains in the range 0.77–0.79 as the first
18 points are deleted, while theory predicts a slope of 0.82.

In summary, the voter model on heterogeneous networks
approaches consensus by a two-stage process of quick
evolution to an opinion-homogeneous state followed by a
diffusive evolution to final consensus. By neglecting node
degree correlations, the consensus time TN on scale-free
17870
graphs has the following dependence on the degree distri-
bution exponent �: for � < 2, TN �O�1�, while for � > 3,
TN � N. In the intermediate regime of 2< �< 3, TN �

N�2��4�=���1�. Generically, TN grows sublinearly with N;
that is, high-degree nodes greatly accelerate the approach
to consensus. Finally, the N dependence of TN is virtually
the same for networks without and with degree
correlations.
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