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How Hertzian Solitary Waves Interact with Boundaries in a 1D Granular Medium
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We perform measurements, numerical simulations, and quantitative comparisons with available theory
on solitary wave propagation in a linear chain of beads without static preconstraint. By designing a
nonintrusive force sensor to measure the impulse as it propagates along the chain, we study the solitary
wave reflection at a wall. We show that the main features of solitary wave reflection depend on wall
mechanical properties. Since previous studies on solitary waves have been performed at walls without
these considerations, our experiment provides a more reliable tool to characterize solitary wave
propagation. We find, for the first time, precise quantitative agreements.
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Solitons are widely studied in physics because of their
ubiquity in systems exhibiting nonlinear propagation [1].
In a granular chain, theoretical and experimental evidence
of solitons was first reported by Nesterenko [2–7]. Since
Nesterenko’s pioneering work, most of the experimental
effort in the field has generally focused on the scaling laws
for amplitude and speed of the solitons [8,9]. It was re-
cently reported [10] that identical and opposite propagating
solitons do not preserve themselves upon collision and
hence these are solitary waves rather than solitons.
Several detailed numerical studies have been devoted to
understanding the interactions of solitary waves with a
perfectly reflecting wall [10–14], and show that tiny sec-
ondary solitary waves are generated as a solitary wave is
reflected off a wall [10,12]. However, due to experimental
difficulties, no close comparison between experiments and
simulations has so far been established. Here inspired by
Nesterenko’s experiments [5–7], we developed an adapted
impulse sensor to nonintrusively investigate solitary wave
propagation in a linear chain of identical elastic beads. We
explored the problem of solitary wave reflection by chang-
ing the elastic properties of the wall and showed that the
solitary wave detected at the wall differs from the actual
solitary wave propagating through the chain. Our measure-
ments significantly improve upon previous experimental
studies [3,8] and allow excellent agreement with our nu-
merical simulations and Nesterenko’s analytical theory [7].

The physical behavior of solitary waves in bead chains
can be described as follows. Under elastic deformation, the
energy stored at the contact between two elastic bodies
submitted to an axial compression corresponds to the Hertz
potential [15] UH � �2=5���5=2, where � is the overlap
deformation between bodies, ��1 � ��� �0� �
�R�1 � R0�1�1=2, � � 3�1� �2�=�4Y�, and R and R0 are
radii of curvature at the contact. Y and � are Young’s
modulus and Poisson’s ratio, respectively. Since the force
felt at the interface is the derivative of the potential with
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respect to �, (FH � @�UH � ��3=2), the dynamics of the
chain of beads is described by the following system of N
coupled nonlinear equations,

m@2ttun � �
�
�un�1 � un�

3=2
� � �un � un�1�

3=2
�

�
; (1)

wherem is the mass, un is the position of the center of mass
of bead n, un � 2nR at rest, and the label � on the brackets
indicates that the Hertz force is zero when the beads lose
contact. Under the long-wavelength approximation �� R
(where � is the characteristic wavelength of the perturba-
tion), the continuum limit of Eq. (1) can be obtained by
replacing the discrete function un	1�t� by the Taylor ex-
pansion of the continuous function u�x	 2R; t�. Keeping
terms of up to the fourth order spatial derivatives, Eq. (1)
leads to the equation for the strain  � �@xu > 0,

@2tt ’ c2@2xx� 
3=2 � �2=5�R2 1=4@2xx� 

5=4��; (2)

where c � �2R�5=4��=m�1=2 [7]. Looking for progressive
waves with speed v, in the form  �� � x� vt�, Eq. (2)
admits an exact periodic solution in the form  � �5=4�2 �
�v=c�4cos4��=�R

������
10

p
�� [2–6]. Although this solution only

satisfies the truncated Eq. (1), there is quantitative analysis
on how well one hump (� �=2< �=�R

������
10

p
�<�=2) of

this periodic function represents a soliton solution [2,16].
Approximating the spatial derivative, the strain in the chain
reads  ’ �=�2R�, and the force felt at beads contacts, F ’

��2R �3=2, and v become,

F ’ Fmcos
6

�
x� vt

R
������
10

p

�
; v ’

�
6

5��

�1
2

�
Fm
�2R2

�1
6
: (3)

In our experiment, we consider the chain of 21 identical
beads of mass m, located on a Plexiglas linear track as
shown on the top of Fig. 1. A piezoelectric dynamic
impulse sensor (PCB 208A11 with sensitivity
112:40 mV=N) located at the end of the chain provides
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FIG. 1. (top) Schematic view of experimental setup.
(a) Experiments: middle peak indicates the force signal at the
end of the chain, whereas lateral peaks are the incident and
reflected solitary wave. The solid line represents the force at a
single contact extrapolated from Eq. (4). (b), (c) The numerical
simulations of the contact forces and energy, respectively, for
(n � 2 �s.
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the force at the rigid end. This sensor has a flat cap made of
the same material as the beads. Beads are Tsubaki high
carbon chrome hardened steel roll bearing (norm JIS SUJ2
equivalent to AISI 52100). The radius of the beads is R �
13 mm (tolerance is 	125 �m on diameter), and the
density is � � 7780 kg=m3. The Young’s modulus is Y �
203	 4 GPa [17], and the Poisson ratio is assumed to be
� � 0:3; our beads thus have a � � 12 N=�m3=2.
Moreover, the deformation keeps elastic and below yield
stress (�Y � 2 GPa [17]). Assuming that the contact sur-
face is a disk of area A � ���RF�2=3 [15], the correspond-
ing maximum compression force is roughly FY ’ 470 N,
which corresponds to an overlap �Y ’ 11 �m. Forces in-
side the chain are monitored by a flat dynamic impulse
sensor (PCB 200B02 with sensitivity 11:24 mV=N) that is
inserted inside one of the beads, cut in two parts. The total
mass of the bead-sensor system has been compensated to
match the mass of an original bead. This system allows
achieving nonintrusive force measurement by preserving
both contact and inertial properties of the bead-sensor
system. The stiffness of the sensor ks � 1:9 kN=�m being
greater than the stiffness of the Hertzian contact (ks �
kH / ��1=2), means the coupling between the chain and
the sensor is consequently negligible. To relate the force Fs
registered by the sensor with the actual force at the beads’
contact, we write Newton’s law for both masses, respec-
tively, located in the front (�) and in the back (�) of the
sensor. Thus, F	 � Fs 	m	@

2
ttx	, with Fs �

ks�x� � x��. This set of equations can be summarized as

@2ttFs �!2
0Fs � !2

0��1� #�F� � #F��; (4)

where we have introduced the resonant angular frequency
of the system !0 � �ks�m

�1
� �m�1

� ��1=2, and the mass
ratio # � m�=�m� �m��. Experimentally # � 0:11
and the resonant frequency, f0 � !0=�2�� ’ 85 kHz, in-
dicates that safe measurements can be obtained for a signal
whose period is greater than %0 � 1=f0 ’ 12 �s.
However, a relation between F	�t� is needed to invert
Eq. (4) and then determine the force F��t� or F��t� from
the force Fs�t�. Assuming that the pulse travels at a veloc-
ity v, this relation reads F��t� � F��t� t0�, where t0 �
�x� � x��=v. An estimate of the velocity v is obtained
from the time of flight of the pulse and the deconvolution of
Eq. (4) by means of fast Fourier transform, then provides
the actual force F��t� felt exactly at the interface between
two beads. Notice that the improvement introduced here
represents a correction of the order of #, i.e., about 10%.
Signals from sensors are amplified by a conditioner (PCB
482A16), recorded by a two channel numeric oscilloscope
(Tektronix TDS340), and transferred to a computer. The
acquisition is triggered by the contact between the small
impacting bead and the chain; by both being in contact
with soft wires they cause the discharge of a capacitor in a
resistor (1=RC ’ 1 �s). This circuit allows high repeat-
ability, e.g., for time of flight measurements. In Fig. 1(a), a
17800
solitary wave propagates along the chain of beads. The
central peak corresponds to the impulse detected at the end,
whereas the two peaks on the sides are the incident and
reflected waves measured inside the chain. Notice that the
central peak is much higher and broader than the actual
solitary wave propagating along the chain, thus no quanti-
tative information can be extracted from it without a de-
tailed description of the interaction between the solitary
wave and the wall. In order to characterize solitary waves,
we look both for velocity and duration of incident pulses
recorded at one contact far from the wall. According to
Eq. (3), we map experiments to F�t� � Fmcos6��t�
t0�=%�, to obtain the amplitude Fm, the duration 2%, and
the time of flight t0 of a pulse. To provide more accurate
data for the velocity, we perform flight time measurements
for different positions of the active bead. In addition, for
every experimental configuration we record three sets of
data and check repeatability, and the whole experiment is
repeated 3 times. According to Eq. (3), we first look for the
best fit in a least squares sense for the experimental veloc-
ity of the pulse, in the form v � CF1=6

m , and we find an
experimental value Ce � 203:6	 8:9 in standard units.
This value agrees with the theoretical prediction Ct �
198:9, derived from Eq. (3), within an error less than 3%.
The fit is plotted in a straight line in Fig. 2(a). For sake of
comparison, we also plot [the straight line in Fig. 2(b)] the
duration 2% � 2R

������
10

p
=v, also obtained from Eq. (3). The
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velocity is thus in a satisfactory agreement with the theo-
retical prediction, which also appears at first glance to
predict in a good manner the duration of the pulse.
However, energy dissipation is expected to produce a
broader solitary wave. Dissipation is characterized by the
restitution coefficient [see Fig. 2(c)] defined as ) �

�Un�1=Un�
1=2 � �Fn�1=Fn�5=6 (Un is the Hertz potential,

i.e., the work done by the Hertz force Fn at the contact n).
Here we consider two mechanisms responsible for the
dissipation; internal viscoelasticity and solid friction of
beads submitted to their weight mg (g is the gravity), on
the track. A third mechanism, the solid friction between
beads due to thwarted rotations [18], may also be taken into
account. However, the contribution of a friction force of
the form F�

s � ����3=2 into Eq. (1) reduces simply to
considering an equivalent nonlinear stiffness �� �
�1�����. Viscoelastic dissipation is included by using
the simplest approximation [19,20] for which the dissipa-
tive force at the contact of two beads reads, Fv �

(�@t��3=2�, where ( includes unknown coefficients due
to internal friction of the material [15,20]. Solid friction is
taken into account by considering a frictional force Fs �
�mg [18]. The potential energy difference �Un �Un�1�,
being equal to the work done by both previous dissipative
forces, allows us to estimate the restitution coefficient to be
force dependent, ) � �Un�1=Un�

1=2 ’ 1� CvF1=6 �
Cs=F. Simple calculations provide the relation of ( and
�with the new constantsCv andCs as,( � 2

������
10

p
RCv=5C

and � � 4Cs=5mg, respectively. Experimentally, we de-
termine that Cv � 1:9� 10�2 and Cs � 1:7� 10�1 in
250

300

350

400

450
500

 Best Fit
 Simulation (no diss.)
 Simulation (dissipative)

(a)

V
e
l
o
c
i
t
y
 
(
m
/
s
)

0.160.16

0.20

0.24

0.28
0.32
0.36

 Fit from velocity
 Simulation (no diss.)
 Simulation (dissipative)

(b)

 

D
u
r
a
t
i
o
n
 
(
m
s
)

10 100
10

-3

10
-2

10
-1

 C
S
/F + C

V
F
1/6

 C
S
/F

 C
V
F
1/6

(c)

1
-
R
e
s
t
i
t
u
t
i
o
n

 Force amplitude (N)

FIG. 2. (a) Velocity v and (b) duration 2% of the solitary wave,
measured inside the chain, vs force amplitude. Theoretical
predictions from Eq. (3), and numerical simulations are con-
trasted to experimental data. (c) Restitution coefficient vs force
amplitude.
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standard units, see Fig. 2(c). Then, (e � 1:8 �s and �e �
0:19.

Numerical simulations based on a velocity-Verlet algo-
rithm allow us to explore the main features of solitary
waves by solving Eq. (1) directly. We first run numerical
calculations without dissipation, plotted in dashed lines in
Fig. 2(a) and 2(b). Looking for the least squares fit for the
velocity, as previously done, we find Cn � 201:5	 0:1.
Compared to the theoretical value Ct, simulations improve
the agreement with experiments (relative error on velocity
is about 1%), but a noteworthy disagreement is now ob-
served for the duration of the pulse [see Fig. 2(b)], which is
about 10% lower than experimental values. This lag is
consistent with the presence of a weak dissipation. At
this stage, we only consider the effect of viscoelastic dis-
sipation in numerical simulations. We thus adjust the co-
efficients, and for (n � 2 �s and � � 0, a good
agreement can be obtained both for the velocity and the
duration, in the range of amplitude where viscoelastic
dissipation dominates over solid friction (Fm > 50 N).
Notice that (n differs from the experimental value (e
only by 20%. Since solid friction has not yet been included
in simulations, the experimental pulse is still broader than
in simulations at low force amplitude (Fm < 20 N) where
this mechanism dominates.

We now check how simulations reproduce the features
of the reflection process. Figure 1(b) shows the correspond-
ing numerical simulations for the incident and the reflected
solitary wave as well as the force registered at the wall.
Although simulations include only viscous dissipation,
(n � 2 �s, the agreement between Fig. 1(a) and 1(b) is
very good. Notice that momentum is conserved, i.e., the
area of the central peak in Fig. 1(a) is equal to the area of
the incident plus the reflected solitary wave. Figure 1(c)
presents the corresponding calculations of the time evolu-
tion of the potential and kinetic energy when a solitary
wave interacts with the wall sensor. The solitary wave is
initiated at t � 0 by a purely kinetic impact. At t � 1 ms
the pulse reaches the rigid sensor and the energy is stored
into potential. The pulse is then reflected and propagates
backward to the free end until leading to ejection of beads
after t � 2 ms.

We further investigated the solitary wave reflection by
varying the mechanical properties of the flat part of sensor
in contact with the last bead. This is done by locating
polished disks of 1 mm thickness and 5 mm diameter of
different known materials on the active part of the sensor.
These samples are made of Plexiglas, Mg, Cu, Si, Fe, and
W. For materials softer than the beads, unexpected features
arise. For instance, in Fig. 3(b), the experimental force on
the wall exhibits a well defined secondary peak. The break
of symmetry implied by the change of elastic properties
leads to the generation of a so-called secondary solitary
wave in the reflected impulse predicted recently via simu-
lations in [11,12]. Dissipationless numerical simulations in
Fig. 3(c) reproduce well the experimental finding of
2-3
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FIG. 3. (a) Ratio of force amplitudes at the end of the chain
and of the incident impulse vs Young’s modulus of the sample
placed on the rigid sensor. Inset (b) force measurements when a
solitary wave collides on the softer sample (Y � 5 GPa), and
(c) corresponding simulation reproducing all the experimental
features for (n � 0. Dashed lines indicate forces at the end of
the chain. The last peaks on the right represent the secondary
solitary waves.
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Fig. 3(b) without an adjustable parameter. Better agree-
ment can be achieved but it requires the knowledge of the
mechanism dominating dissipation of the samples.
Figure 3(a) is the ratio of the maximum force measured
at the wall and the respective maximum force of the
incident solitary wave. Despite the peculiar form of the
force, the ratio of maximum forces follows a well defined
law that is characteristic of the kinetic to potential energy
conversion at the wall. This interesting feature should
prove valuable to determine the Young modulus of mate-
rials of unknown nature, when the sample size is a practical
limitation.

To understand the underlying physics of solitary wave
reflection, we focus on the kinetic-potential energy con-
version when a solitary wave interacts with a rigid wall. As
shown on Fig. 1(c) and [2,7], when a solitary wave prop-
agates freely in the chain, the kinetic energy Kchain is about
56% and the potential energy Uchain is about 44% of the
total energy (for a rough estimation we assume Kchain ’
Uchain). However, when a solitary wave reaches the end of
the chain, the potential energy stored at the sensor-bead
contact equals the total energy carried by the solitary wave.
The kinetic energy is thus transformed into potential at the
contact. Then, Umax

end ’ 2Uchain. On the other hand, the
solitary wave extends on a few beads, and the potential
energy stored in the chain is roughly supported by the most
compressed contact (Uchain ’ Umax

bead). It finally becomes,

Umax
end

Umax
bead

’ 2 !
Fmax
end

Fmax
bead

’ 26=5
�
1�

Ybead
Yend

�
�2=5

; (5)

which is a function of the Young modulus of beads and the
17800
sensor plane. In Fig. 3(a), we compare experiments, nu-
merical simulation, and the above estimate. Within the
error bars, a satisfactory agreement is obtained.

In conclusion, we have developed a nonintrusive reliable
method to investigate solitary wave propagation and soli-
tary wave reflection at walls. Our measurements in con-
junction with our numerical simulations provide a
powerful tool to accurately investigate a variety of related
problems such as the main features of solitary waves
reaching impedance mismatch, the generation of the re-
cently predicted secondary solitary waves at the bounda-
ries, and the solitary wave interactions, among others.
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