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Force Indeterminacy in the Jammed State of Hard Disks
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Granular packings of hard disks are investigated by means of contact dynamics which is an appropriate
technique to explore the allowed force realizations in the space of contact forces. Configurations are
generated for given friction coefficients, and then an ensemble of equilibrium forces is found for fixed
contacts. We study the force fluctuations within this ensemble. In the limit of zero friction, the fluctuations
vanish in accordance with the isostaticity of the packing. The magnitude of the fluctuations has a
nonmonotonous friction dependence. The increase for small friction can be attributed to the opening of the
angle of the Coulomb cone, while the decrease as friction increases is due to the reduction of connectivity
of the contact network, leading to local, independent clusters of indeterminacy. We discuss the relevance
of indeterminacy to packings of deformable particles and to the mechanical response properties.
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Jamming [1] has been in the focus of recent studies
because it occurs in a great variety of phenomena like
structural and spin glasses, colloidal systems, vehicular
traffic, and granular media. The characterization of the
jammed state is therefore crucial and can perhaps be best
achieved in granular systems. Many intriguing properties
of granular packings originate from the microscopic force
transmission through a contact structure, where nonlinear-
ity and disorder are known to be crucial. It is an essential
but not resolved question how the highly inhomogeneous
force network influences the macroscopic stress transmis-
sion in dense granular media.

Since the deformations of the grains are usually much
smaller than their size, a very useful reference system for
granular matter is that of rigid (undeformable) particles [1–
4]. It is known that random packings of frictional rigid
disks or spheres exhibit a hyperstatic structure [5–7]: the
number of the linear equilibrium equations of the grains,
which relate the unknown contact forces to the external
load, is too small to determine the contact forces uniquely.
Therefore, many mechanically admissible force networks
are possible in the same packing geometry and for the same
external load, which define an ensemble of force
configurations.

This ensemble recently has received much attention
[6,8–14] due to the idea that some macroscopic properties
of jammed granular systems can be derived based on an
ensemble average over the admissible force states [8]. The
determination of force distribution in [9] or the Green
function in [10] are based on this approach.

Another interesting aspect of the force ensemble is
related to the behavior of the system under external per-
turbations. Packing structures where contact forces are
unique or strongly restricted appear to be fragile: slight
change of the load can cause rearrangements of the parti-
cles [15,16]. The question arises whether a packing that
exhibits many possible realizations of equilibrium forces
becomes more robust against perturbations.
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The results of this Letter provide nontrivial information
also for packings of deformable particles: the actual net-
work of contact forces (which is uniquely determined by
the elastic deformations) must be contained in the force
ensemble calculated for the same contact geometry assum-
ing the particles (in their deformed shape) would be per-
fectly rigid. Moreover, for a finite system of sufficiently
rigid particles the contact geometry can be arbitrarily close
to the ideal one obtained for perfect rigidity. Which of the
solutions in the force ensemble is realized, depends, e.g.,
on the elasticity of the individual grains. Here we address
the question of how strong the restrictions provided by the
force ensemble are.

Again another but closely related issue is that of hard
particle simulations, where the dynamics is seemingly
ambiguous due to the indeterminacy of forces [13].

The above problems indicate the significance of the
force ensemble; however, very little is known about its
properties. In this Letter some characteristics of the en-
semble are revealed, where emphasis is put on the influ-
ence of friction.

In the recent literature [9,10] it was suggested that all
elements in the ensemble of admissible force configura-
tions are realized with equal probability. This microcanon-
ical approach can be regarded as a restricted version [17] of
the Edwards ensemble [1–3]. In the following we also
address the validity of this assumption.

Let us consider n rigid, cohesionless disks. A configu-
ration of the contact forces fFig (where i is the contact
index) is called admissible or a solution if two conditions
are fulfilled: the equilibrium and the Coulomb conditions.
The first one requires force and torque balance at each
grain, while the Coulomb condition reads:

j�Fi�tj � ��Fi�n (1)

for the normal and tangential force at each contact, where
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FIG. 1. Force ambiguity � (full circles) and average coordi-
nation number z (open circles) as functions of the friction
coefficient �. For comparison, squares connected by the line
show the � values for a configuration of disks that was con-
structed without friction.
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� is the friction coefficient. For �> 0 no additional
condition is needed to exclude tensile forces.

Next we show that the solutions form a convex set. The
space of contact forces F is defined (for fixed contact
network) as an Nc � d dimensional vector space, where
each point represents a force configuration fFig. Nc is the
number of contacts, and d the space dimension (i.e., each
contact force component represents 1 degree of freedom).
Let S be the subset of admissible states in F under some
fixed external forces. For a regular packing of disks S is
known to be a convex polyhedron [11] but it is easy to see
that convexity is satisfied in any case: shape of the parti-
cles, disorder, dimensionality, or friction do not matter.
Convexity means that if fFig and fFi � �Fig are solutions
then fFi � 
�Fig is a solution as well for 0 � 
 � 1. First,
the equilibrium condition holds: both given force configu-
rations provide equilibrium against the external load, thus
their difference f�Fig corresponds to zero load and exerts
no total force or torque on the particles. Therefore, it can be
scaled freely (unrestricted 
) and added to an admissible
state that does not violate the linear equilibrium equations.
Second, the Coulomb condition is satisfied simply because
for each contact i, the d-dimensional Coulomb ‘‘cone’’ is a
convex set and therefore must contain the component Fi �

�Fi with 0 � 
 � 1.

The solution set S reflects basically the properties of the
contact network; therefore, when studying S it is crucial
what kind of packing structure is considered. In real pro-
cesses which lead to jamming, the microscopic structure is
not prescribed but develops spontaneously up to the point,
where further rearrangements against outer driving forces
are blocked. This self-organized texture is an important
feature of granular materials [15] which is disregarded in
models using, e.g., regular arrangements [11,12].
Therefore the packings studied below were constructed
with discrete element simulations where the particles obey-
ing Newton’s dynamics build up the contact network in a
compression process. In these jammed configurations we
search for various solutions of the contact forces and study
the influence of friction on the properties of S.

A detailed description of our method of constructing the
packings and exploring admissible force configurations
can be found in [6]; here only a short review is given.
With the help of the contact dynamics algorithm [18,19] a
2D system of 200 rigid disks is compressed along the
vertical axis between two horizontal plates. Horizontally
periodic boundary conditions are applied, gravity is set to
zero, disk radii are uniformly distributed between R and
2R, and the horizontal system width is 42R. We wait until
the packing jams (relaxes into equilibrium) under the
constant force of compression. Then, to avoid the effect
of the straight plates, only the middle part of the static
configuration is considered for further investigation: this is
a horizontal slice of height 28R throughout the whole width
in the bulk away from the plates. We retain the contact
forces at the top and bottom perimeter of the slice as fixed
boundary forces; thus they provide the external load on the
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system. The plates and the disks outside the slice can be
left away.

After that, the exploration of the admissible force solu-
tions follows for this fixed arrangement of disks. We start
with the force state that appeared at the jamming and
perturb all contact forces randomly [20], which leads out
of equilibrium and violates the Coulomb condition. This
perturbed state serves as the input for the Gauss-Seidel-like
iterative solver of the contact dynamics method. This
iterative algorithm lets the forces relax into a consistent
state, providing a (possibly) new solution [6,19]. The
perturbation and relaxation can be repeated many times,
always starting from the last solution (a kind of random
walk in the force space); in that way, it is possible to
sample points from S.

Based on this collection of force solutions we can assess
the differences between admissible states and study the
problem of force indeterminacy. The main feature of S that
we found in these self-organized structures is that the
admissible force networks are rather similar: the pattern
of strong force lines changes little from one realization to
the other, showing that the contact network imposes strong
restrictions on the force configuration.

For each contact force Fi, its variance ��Fi�
2 is calcu-

lated over the measured realizations. The ratio

� 	 h�Fi=hjFji (2)

represents the ensemble fluctuation in S; thus it can be
regarded as a measure of ambiguity of the forces. h�i means
the average over all contacts. The force ambiguity � has to
be distinguished from the degree of indeterminacy which
refers to the dimension of the affine subspace of force
configurations solving the equilibrium conditions (without
the restrictions due to the Coulomb cones).

To investigate the effect of friction, a new packing is
constructed for each value of � before sampling the solu-
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FIG. 2 (color online). The difference between two admissible
force networks for (a) � 	 0:1 and (b) � 	 0:5. Only normal
force differences are indicated with different colors depending
on their sign.
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tions. The force ambiguity � is plotted in Fig. 1 (full
circles). Values of � around 107 reflect the accuracy level
of our calculation and the corresponding force configura-
tions can be regarded as identical with this tolerance. In the
zero friction limit the force ambiguity disappears confirm-
ing isostaticity of frictionless packings [7,21,22]. For small
� the force ambiguity grows proportionally with friction;
however, for larger � it decreases again. The largest am-
biguity of the forces is found around � � 0:1. Despite the
further opening of the Coulomb angle, fluctuations are
getting smaller; even fully determined states are found
for strong friction.

The behavior of � results from two competing effects:
first, increasing friction provides larger freedom locally for
the tangential forces; second, it also stabilizes the system in
a less dense state [23] causing lower connectivity of the
contact network (open circles in Fig. 1), which reduces
force ambiguity. One can separate the two effects by fixing
the configuration and letting the Coulomb angle alone
influence �: we generated one packing without friction
but switched on friction before sampling force configura-
tions. The results obtained this way (squares in Fig. 1)
provide monotonously increasing fluctuations, as ex-
pected. Compared to the original data (full circles), devia-
tions appear only on the right side of the figure, where the
changes in the connectivity become important, while the
behavior on the left side is governed by the first effect. For
small � the average coordination number of the configu-
ration is essentially the same as in the frictionless case,
where from isostaticity Nc � 2n follows. This gives us the
degree of indeterminacy: 2Nc  3n � Nc=2, since there
are two unknown force components per contact and three
equations per disk due to force and torque balance. Thus
we conclude that for tiny friction there is a small but high-
dimensional set of force solutions in the 2Nc dimensional
force space, and its size goes to zero with vanishing fric-
tion. Similarly for spheres in three dimensions, one ob-
tains an Nc-dimensional solution set S within a
3Nc-dimensional force space F .

For large � the dimension of S is strongly reduced due
to the decreasing number of contacts. In our small system
we found that dim�S� can reach even zero, allowing only
one single force configuration. This case corresponds to the
marginal rigidity state found in experiments [24].

The regression of the degrees of freedom occurs in an
interesting way: the indeterminacy gets localized in space
into small subgraphs of the contact network, which are
surrounded by determined forces; i.e., a relatively large
ambiguity is present but only in a small part of the system
[Fig. 2(b)]. The pattern of the fluctuation-bearing contacts
can be visualized by plotting the difference between any
two admissible force configurations. We found the same
subgraphs as in Fig. 2(b) also for other arrangements of
boundary forces, showing that this indeterminacy pattern is
indeed a property of the packing texture. Each of the two
subgraphs shown in Fig. 2(b) is statically indeterminate,
carries only 1 degree of freedom, and cannot be reduced
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further because the deletion of one particle or one contact
would cancel the internal indeterminacy. We call such
subgraphs elementary clusters. They can be regarded as
geometric units of indeterminacy.

If the connectivity is high, the formation of elementary
clusters is more probable, which suggests the following
picture: for small friction, many overlapping elementary
clusters are formed so that two admissible solutions ge-
nerically differ throughout the system [Fig. 2(a)]. As Nc is
reduced, the density of the elementary clusters � decreases
and the indeterminacy gets localized into small separated
domains. Around � 	 1 the density � becomes so small
that only a few elementary clusters are present due to the
finite system size. This explains the strong scattering of the
data for � in Fig. 1.

The spatial localization raises the question of a percola-
tion transition. In case of small � the separated domains
carry force fluctuations independently of each other; there-
fore, we think that � becomes a well defined intensive
quantity for large systems. However, if the indeterminacy
percolates through the system, the overlapping elementary
clusters provide fluctuating boundary forces for each other;
thus the indeterminacy of forces is enhanced with growing
system size. Simulations up to 500 particles show this size
dependence, but it is not clear what happens in the ther-
modynamic limit.

Finally we investigate the dynamically created force
configuration fFi;0g, which is determined by the construc-
tion history. Our findings indicate that this state is more
‘‘central’’ than typical points in the solution set: we gen-
erate 20 initial configurations with � 	 0:01 and sample
for each of them 100 points randomly in S. Their (vecto-
rial) average is regarded as the center of S. Then we
measure the Euclidean distances ‘ of the sampled points
from the center. The histogram of the distances in units of
their average �‘ is shown in Fig. 3 together with the histo-
gram of the distances ‘0 of the initial, dynamically gen-
erated 20 points from the centers of the corresponding sets
S. The two histograms clearly indicate that the initial
points are closer to the center on average than the randomly
sampled ones. Assuming that the distribution of the ran-
dom sampling of S is close to a uniform one, we conclude
1-3



FIG. 3. Histograms of the distributions of normalized distances
of dynamically generated (full circles) and randomly sampled
(open circles) points in the sets S for � 	 0:01. The inset shows
a two-dimensional cross section of a high-dimensional solution
set. The dynamically constructed force state is marked by the
arrow. The white area belongs to S, while outside S the gray
scale indicates the violation of the Coulomb condition (darker
means smaller violation).
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that the force configurations of the dynamically generated
jammed states are not uniformly distributed in the set S.

That the original force configuration is ‘‘closer to the
center’’ is not in contradiction to the fact that we always
find it at the edge of two-dimensional cross sections of the
high-dimensional solution set S (see inset of Fig. 3). We
suggest the following physical picture: a contact with large
mobilization of friction (Ft=�Fn � 1) is less stable against
perturbations. Near the end of the relaxation process, small
collisions ‘‘shake’’ the already established contacts reduc-
ing the possibility that the contact remains on the verge of
sliding. However, the system comes to rest finally by the
marginal fulfillment of the Coulomb criterion at some
contacts.

Our results show a significant difference between dis-
tributions of the solutions sampled by the random walks
plus relaxation and of those relaxed physically. The uni-
formity of the (unbiased) random walk based sampling
cannot be proved due to the high dimensionality of the
problem; however, the distance distribution of the points
should be rather robust just because of this high dimen-
sionality. Therefore we consider the observed discrepancy
though not as a proof but as a strong indication of the
violation of the microcanonical assumption for the physi-
cally realized solutions.

It is expected that the ambiguity of forces for a given
geometry has implications for the mechanical behavior.
We regard the following preliminary result as an indication
of such an effect. For a horizontal layer of hard disks
settled under gravity we applied a point force downwards
on the free surface, just strong enough to cause local
rearrangement. We measured the depth of the rearrange-
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ment zone and obtained nonmonotonous dependence on �:
it is larger for small and large friction coefficients, and has
a minimum at � � 0:1, right where � reaches its
maximum.
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