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Bimolecular Recombination Coefficient as a Sensitive Testing Parameter
for Low-Mobility Solar-Cell Materials
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1Department of Physics, Åbo Akademi University, Porthansgatan 3, 20500 Turku, Finland

2Graduate School of Materials Research, Universities of Turku, Turku, Finland
3Department of Solid State Electronics, Vilnius University, Saulėtekio 9 III K, 01513 Vilnius, Lithuania
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Bimolecular charge carrier recombination has been clarified in bulk-heterojunction solar cells based on
a blend of regioregular poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)propyl-1-phenyl-[6,6]-
methanofullerene using the time-of-flight method. We show how bimolecular recombination influences
the charge carrier transport, how it limits the efficiency of low-mobility solar cells, and how to estimate the
bimolecular recombination coefficient. We found that bimolecular recombination in these efficient
photovoltaic materials is orders of magnitude slower as compared to Langevin recombination expected
for low-mobility materials. This effect is inherent to the nanomorphology of the bicontinuous inter-
penetrating network creating separate pathways for electrons and holes, and paves the way for the
fabrication of bulk-heterojunction solar cells where bimolecular recombination is not the limiting factor.
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The discovery of ultrafast photoinduced charge transfer
between the photoexcited state of a nondegenerate semi-
conducting �-conjugated polymer (PCP) and 1-(3-me-
thoxycarbonyl)propyl-1-phenyl-[6,6]-methanofullerene
(PCBM) facilitated intensive research towards the develop-
ment of large area, low cost photovoltaic devices and
photodetectors manufactured from these materials, the
so-called bulk-heterojunction solar cells [1,2]. In general,
PCPs are considered to be disordered systems. One of the
drawback in disordered materials is the significantly lower
carrier mobility, compared to crystalline semiconductors.
The low mobility is caused by the hopping distance, which
is shorter than the Coulomb radius rc � e2=4���0kT,
where e is the electron charge, � (�0) the relative (absolute)
dielectric permittivity, k the Boltzmann constant, and T the
temperature, and consequently the probability for escaping
recombination will be lowered. This causes low photo-
generation efficiency and diffusion controlled charge car-
rier recombination of Langevin-type determined by the
probability for photogenerated electrons and holes to
meet in coordinate space [3,4]. The magnitude of the
recombination rate is then described by the Langevin
recombination coefficient 	L � e��p ��n�=��0, where
�n (�p) is the electron (hole) mobility [5].

To achieve current densities of the same order as in
crystalline solar cells, the concentration of photogenerated
charge carriers (nph) must be much higher for low-mobility
materials used in solar cells. High carrier concentration
causes a small lifetime of the charge carriers ��t� �
�	nph�t��

�1, where 	 is the bimolecular recombination
coefficient, and, consequently, short diffusion and drift
distances. The necessary condition for a high energy con-
version coefficient of a solar cell is that the lifetime of the
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charge carriers must be higher than their transit time in the
intrinsic electric field tti, i.e., � > tti. Thus, nph <
�Ubi=	d

2, where Ubi is the built-in electric field.
In order to reach a conversion efficiency of >5%

for solar cells with a thickness of d � 300 nm and open
circuit voltage of Voc � 0:5 V, a photocurrent density of
* 15 mA=cm2 is required, leading to a necessary condi-
tion that �	L=	 > 5	 10�3 cm2=Vs. This criterion
clearly shows that the bimolecular recombination coeffi-
cient is an important testing and characterization parameter
to evaluate the suitability of low-mobility materials to be
used in efficient solar cells.

The charge carrier generation and recombination in
bulk-heterojunction solar cells has been widely studied
using optical techniques such as photoinduced absorption
or light induced electron spin resonance on films with no
electrodes attached [6–11]. Recombination losses in de-
vices also have been studied electrically by correlating the
short circuit current of the solar cell to the excitation light
intensity at different temperatures [12,13]. Usually a linear
dependence of the short circuit current on the excitation
light intensity at room temperature is found, leading to the
conclusion that bimolecular recombination is not impor-
tant in bulk-heterojunction solar cells. We want to empha-
size that, to the best of our knowledge, none of the studies
directly address the issue of bimolecular recombination in
an operating device.

In this Letter, we show the importance of the bimolec-
ular recombination coefficient as a sensitive testing pa-
rameter for low-mobility materials for solar cells. We
show how bimolecular recombination affects the charge
transport and causes an upper limit on the charge that can
be extracted. Furthermore, we have experimentally clari-
6-1  2005 The American Physical Society



FIG. 1 (color online). Numerically calculated TOF transients
normalized to the space charge limited current value jSCLC �
9""0�U2

0=8d
3, as a function of normalized light intensities L0 �

eLS=CU0. The parameters used in the calculations are typical of
a bulk-heterojunction solar cell, namely, RC=ttr � 10, �d � 4,
and (a) 	=	L � 1 and (b) 	=	L � 0:01. The reservoir extrac-
tion time te is determined as the difference between the half time
of the extraction current at high and low light intensities,
respectively.
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fied the bimolecular recombination in bulk-heterojunction
solar cells using well established time-of-flight (TOF)
techniques. We also would like to point out that this
technique is useful for thin films. We show that the recom-
bination in bulk-heterojunction solar cells based on a blend
of regioregular poly(3-hexylthiophene) (RRPHT) and
PCBM is greatly reduced, which is in agreement with
previous studies [12]. We propose that the slower recom-
bination is inherent to the nanomorphology of the inter-
penetrating network of these photovoltaic materials.

At high light intensities, the photogenerated charge car-
riers creates a reservoir where the electric field is immedi-
ately screened. The extraction of charge carriers from the
reservoir causes a decrease of the reservoir width, while the
field will remain zero in the reservoir. We can therefore
neglect the influence of carrier extraction on the recombi-
nation and simplify the decay kinetics in the reservoir as

dnph
dt

� �	n2ph; (1)

with the solution

nph�x; t� �
�

1

�L exp���x�
� 	t

�
�1
; (2)

where � is the absorption coefficient and L is the intensity
of the laser pulse given in photons per unit square. The
decay of the photogenerated charge carrier concentration is
governed by carrier recombination and extraction from the
sample in the electric field, and we can write the equation

N�t� �
Z d

0
nph�x; t�dx�

1

e

Z t

0
j�t�dt

�
1

�	t
ln

1� 	�Lt
1� 	�Lt exp���d�

�
1

e

Z t

0
j�t�dt; (3)

where N�t� is the amount of charge carriers per unit square
at the moment t. The complete extraction of photogener-
ated charge carriers is obtained at the charge carrier reser-
voir extraction time te such that N�te� � 0.

With increasing light intensity, the extraction current
will become space charge limited under surface generation
(�d 
 1) or limited by the circuit resistance when �d _ 1
(bulk generation). For high light intensities (L ! 1) and
thin films (�d _ 1), the extracted charge will saturate and
become independent on light intensity due to bimolecular
recombination and we get an expression for the extracted
charge Qe by simplifying Eq. (3):

Qe �
Z 1

0
jedt �

edS
	te

; (4)

where S is the electrode area. Equation (4) can be rewritten
as

	
	L

�
CU0

Qe

ttr
te
; (5)

whereC is the geometrical capacitance of the sample,U0 is
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the applied voltage on the sample, and ttr is the transit time
of the photogenerated charge carriers. We note that if only
monomolecular recombination is present, te does not satu-
rate as a function of light intensity, but has a logarithmic
intensity dependence te / lnL [14].

We have numerically calculated current transients by
solving the set of Poisson, current, and kinetic equations
neglecting thermally generated charge carriers, monomo-
lecular recombination, and trapping [14,15] using values
typically observed in bulk-heterojunction solar cells [2]. In
Fig. 1 the results of the numerically calculated current
transients, normalized to the space charge limited current
value jSCLC � 9��0�U2

0=8d
3, as a function of light inten-

sity normalized to the charge that can be stored on the
electrodes L0 � LeS=CU0 are shown for RC=ttr � 10, and
in (a) 	=	L � 1 and in (b) 	=	L � 0:01.
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From Fig. 1 the amount of extracted charge Qe and the
extraction half time t1=2 as a function of light intensity were
estimated and shown for various 	=	L ratios in Fig. 2. It is
clearly seen that the extraction half time starts to increase
when the extracted charge equals the charge stored on the
contacts.

To experimentally clarify the bimolecular recombina-
tion in bulk-heterojunction solar cells, we used a 3 ns
Nd:YAG laser operating in the second harmonic
(532 nm) with the energy of 0.3 mJ per pulse. The
sandwich-type samples were made by spin coating a
0:7 �m thick film from a blend of RRPHT and PCBM in
the ratio 1:2 on top of an indium tin oxide (ITO) glass
substrate covered by a 80–100 nm poly(3,4-
ethylenedioxythiophene)-poly(styrenesulfonate) film [16].
The absorption coefficient of the blend is � � 6:3	
104 cm�1 ( � 532 nm), giving �d � 4:4. We use inte-
gral mode TOF (Q-TOF), where �RC 
 ttr in the experi-
ment. To get highest possible charge carrier densities, the
samples were illuminated through the ITO. To experimen-
tally determine te, we use the difference of the time at high
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FIG. 2 (color online). Calculated extracted charge in (a) and
half time in (b) as a function of light intensity for various 	=	L
ratios.
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and low light intensities when the TOF transients have
decreased to half their initial value, i.e., te � t1=2�L "� �

t1=2�L #�, as suggested by Juška et al. [14] [see Fig. 1(b)].
The experimentally measured Q-TOF transients are

shown in Fig. 3(a). There is a striking similarity between
the experimentally measured and numerically calculated
curves both in magnitude and shape. At high light inten-
sities the current transients saturate due to bimolecular
recombination as predicted by Eq. (3). The extracted
charge Qe=CU0 and the extraction half time t1=2 as a
function of light intensity were estimated and shown in
Fig. 3(b). It is clearly seen that the extraction half time
starts to increase when Qe � CU0, as is also seen in the
calculated curves in Fig. 2. Both Qe=CU0 and t1=2 clearly
saturates on increasing light intensity, and from the satu-
ration value we estimate the bimolecular recombination
coefficient using Eq. (4) as 	 � 2	 10�13 cm3=s. We
were also able to measure the mobility of the fastest
carriers using current mode TOF in the same solar cell
and found that � � 4	 10�3 cm2=Vs independent of
time and of electric field [17]. We can therefore calculate
FIG. 3 (color online). (a) Measured Q-TOF transients as a
function of light intensity with an applied electric field of
60 kV=cm and (b) extracted charge together with extraction
half time as a function of light intensity. The dashed line shows
that the increase of the extraction half time starts when Qe �
CU0. Please note the similarities to Fig. 2.
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the Langevin recombination coefficient as 	L �
2	 10�9 cm3=s, allowing us to estimate 	=	L � 10�4.
From our measured values of Qe and te as a function of
light intensity and applied voltage, we find that the esti-
mated values of 	 are all within the error limit of the
experiments. The temperature dependence of 	=	L was
measured and we found a small activation energy of ap-
proximately 30 meV. The weak temperature dependence of
	=	L indicates that the probability for an electron and a
hole to meet is determined by tunneling. If the lower
recombination were caused by thermal activation over a
barrier, then an energy barrier of approximately 0.5 eV
would be required, which is clearly not the case.

In low-mobility materials such as amorphous selenium
[3] and PCPs [4,18] 	 � 	L, causing an upper limit on the
current density while reduced bimolecular recombination
is necessary for efficient solar-cell operation. In bulk-
heterojunction solar cells, i.e., PCPs mixed with PCBM,
the photogeneration efficiency is close to unity [1,2] and
independent of electric field. The immediate creation of a
separated electron-hole pair together with the fact that the
recombination is greatly reduced suggests that the nano-
morphology of the bicontinuous interpenetrating network
creates separate pathways for electrons and holes [19]. The
nanomorphology of the bulk-heterojunction solar cell
which both enables efficient charge generation and enhan-
ces transport of holes and electrons via separate pathways
to the contacts therefore seems to be important for high
power conversion efficiency solar cells [20]. This effect is
analogous to the random potential in �-Si:H, which de-
creases the probability for the holes and electrons to meet
and recombine [21,22].

In conclusion, we have shown how to determine bimo-
lecular recombination losses in low-mobility materials
suitable for solar cells using TOF. We found that the
bimolecular recombination coefficient is greatly reduced
in a model system of bulk-heterojunction solar cells so that
	=	L � 10�4. The reduced recombination allows charge
carriers to escape recombination and reach high enough
densities so that energy conversion efficiencies of the bulk-
heterojunction solar cells is not limited by bimolecular
recombination. The nanomorphology of the bicontinuous
interpenetrating network is the key for both the efficient
generation as well as for reduced recombination.
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