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Vibrational Sidebands and the Kondo Effect in Molecular Transistors
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Electron transport through molecular quantum dots coupled to a single vibrational mode is studied in
the Kondo regime. We apply a generalized Schrieffer-Wolff transformation to determine the effective low-
energy spin-spin-vibron interaction. From this model we calculate the nonlinear conductance and find
Kondo sidebands located at bias voltages equal to multiples of the vibron frequency. Because of selection
rules, the side peaks are found to have strong gate-voltage dependences, which can be tested experimen-
tally. In the limit of weak electron-vibron coupling, we employ a perturbative renormalization group
scheme to calculate analytically the nonlinear conductance.
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In recent years, the study of transport in mesoscopic
systems has branched into investigations of single-electron
devices based on single-molecule transistors [1–5]. Of
particular interest is the possibility of combining elec-
tronics with mechanics, such that the vibrational or con-
figurational modes of the molecule are coupled to its
charge state. A number of interesting issues have already
been addressed in this new field of nanoelectromechanics.
First, it was shown by Park et al. [2] that quantum me-
chanical behavior of the center of mass oscillation of a C60

can be excited by the tunneling electrons and a series of
assisted steps were observed in the current. Similar struc-
tures have later been observed in a number of other
experiments.

It is well established [6,7] that single particle resonance
tunneling is not destroyed by the electron-vibron coupling,
but instead the resonance breaks up into a number of vibron
sidebands. The question remains, though, whether more
intricate many-body effects, such as the Kondo resonance,
also cooperate with the electron-vibron coupling to form
‘‘Kondo sidebands.’’ The usual Kondo resonance has been
observed in several molecular devices [3,4] at unusually
high temperatures, and recent experiments [5] on C60, and
Co based transistors have revealed marked sideband reso-
nances, which were suggested to arise from the interplay of
a Kondo resonance with a vibrational mode.

In this Letter we demonstrate that, in contrast to sequen-
tial tunneling, which is suppressed by the Franck-Condon
overlap factors, the Kondo resonance remains intact well
inside the Coulomb-blockade valley. In fact, the electron-
vibron coupling is predicted to enhance the exchange
coupling and thereby the Kondo temperature. Main-
taining the quantum coherence of vibrons, we show that
the Kondo resonance breaks up into a series of vibron
sidebands. Moreover, we demonstrate that parity selection
rules prohibit all sidebands at odd multiples of the oscil-
lator frequency when tuning the gate voltage to the
particle-hole symmetric point.

Assuming the energy-level spacing on the molecule to
be much larger than the charging energy, the system may
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be described by the Anderson-Holstein Hamiltonian

H �
X
�;k;�
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y
�k�c�k� � "dnd �!0byb�Und"nd#

�
X
�;k;�

�t�kd
y
�c�k� � H:c:� � �!0�b� by�nd; (1)

where cy�k� and dy� are creation operators for electrons in
the left and right conduction bands (� � L;R) and on the
molecular quantum dot, respectively, nd� � dy�d�, nd �
nd" � nd#, and ��k � "k ���. The vibrational mode of
the molecule is created by the vibron operator by and �
denotes the dimensionless coupling strength. Describing
the molecule as a quantum dot, we have "d � �1�
2N �EC and U � 2EC, in terms of the charging energy
EC and the mean occupation number N � CgVg=e, de-
termined by the gate voltage, Vg, and the capacitance to the
gate, Cg. Unless explicitly stated otherwise, we shall
henceforth work in units where e � �h � kB � 1.

Following Lang and Firsov [8], the electron-vibron cou-
pling in the Hamiltonian (1) is eliminated by the unitary
transformationH0 � eiSpHe�iSp , with Sp � i��b� by�nd:

H0 �
X
�;k;�

��kc
y
�k�c�k� � "0dnd �!0byb�U0nd"nd#

�
X
�;k;�

�t�ke��b
y�b�dy�c�k� � H:c:�; (2)

where "0d � "d � �2!0 and U0 � U� 2�2!0. We now
consider the weak-tunneling limit, 	�k �
2�N�0�jt�kj2 � min��"0d; "

0
d �U0�, where N�0� denotes

the conduction electron (ce) density of states. In this limit,
a generalized Schrieffer-Wolff transformation, devised by
Schüttler and Fedro [9], may be used to eliminate all first
order terms in t�. To this end, we introduce the generator
Sv � i

P
�;k;�;"�t�k#�k�"n

"
d ��d

y
�c�k� � H:c:�, where

n"d �� � �1� "�=2� "nd ��, with " � �1, �� � ��, and
#�k�" � i

R
1
0 dte

�i�E�k"�i0��te�A�t�, with E�k" �

��k � "0d � �1� "�U0=2 and A�t� � ��e�i!0tb�
ei!0tby�. Applying the transformation H00 � eiSvH0e�iSv
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and expanding to second order in t�, one finds that H00 �

H00
0 �Hspin �Hdir �Hpair [9]. We neglect the renormal-

ization of the kinetic energy term in H00
0 and, restricting to

the regime of single occupancy, i.e., N � 1 and �2!0 �
EC�U

0 > 0�, Hpair vanishes. The potential scattering term,
Hdir, is omitted since it leads to no logarithmic singular-
ities, and altogether we obtain the effective Hamiltonian

H00 �
X
�;k;�

��kc
y
�k�c�k� �!0b
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�
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&�0�

2
c�k�; (3)

where S � 1
2d

y
�0&�0�d� denotes the local spin-1=2,

and J�;k;�0;k0 � t��0k0t�k��X�
�k � X�

�k� � �X�
�0k0 � X�

�0k0 �y�

with X"�k � i
R
1
0 dte

�i�E�k"�i0��t�i"�2 sin�!0t�eA�0��A�t�.
In this effective Kondo model, the exchange-coupling J

incorporates the dynamics of the vibron through the dis-
placement operator eA. In the vibron number-state basis it
is therefore convenient to introduce Franck-Condon factors
fn0n � hn0jeA�0�jni [10], which allows us to write the matrix
elements of J in the more transparent form:

Jn
0n
�0;k0;�;k � hn0jJ�0;k0;�;kjni

� t��0k0t�k
X1
m�0

�
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�
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�
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�
1

��k � "� � �m� n�!0

�
1

��0k0 � "� � �m� n0�!0

��
; (4)

valid for ��k, ��0k0 , n!0, n0!0 � min�"�;�"��, where
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"� � "0d and "� � "0d �U0 are the energies of intermedi-
ate, empty, or doubly occupied states. In this sum, the
energies of intermediate vibron states jmi shift the energy
denominators and the Franck-Condon factors determine
the overlap between initial and final vibron states with
intermediate states of the oscillator shifted by

���
2

p
�‘0,

where ‘0 is the characteristic oscillator length.
Since

P
1
m�0 fn0mfnm � ,n0n and fn0n ! ,n0n for �! 0,

the usual exchange coupling, J�0� � 4t��0t�=EC, is recov-
ered in either of the limits !0 ! 0 or �! 0. More
generally, Jn

0n may be represented as an asymptotic
power series as EC=!0 ! 1, with leading terms
Jn

0n
�0� / J�0���!0=EC�jn

0�nj. In terms of the incomplete
Gamma function, -��; x�, one has J00�0� �

J�0�e��
2
�EC=!0�

P
"�����

2�"""=!0-�"""=!0;��2�, or
simply J00 � J�0��1� ��!0=EC�

2� for �!0 � EC and
N � 1, as found earlier in Ref. [9]. Staying well inside
the Kondo regime, any finite � thus leads to a slight
enhancement of J00, and thereby of the associated Kondo
temperature, TK �De�1=N�0�J00 (2D being the ce band-
width). In contrast to the resonant (sequential) tunneling
amplitude involving real excitations of the oscillator [2,7],
the (cotunneling) amplitude J00 is not suppressed by a
Franck-Condon overlap since it involves only virtual shifts
of the oscillator.

We now consider the case of strongly asymmetric and
momentum independent tunneling amplitudes, 	L � 	R.
The current traversing the molecule from left to right is
then given simply as [11] I � � 2e

h 	R
P
�

R
d"�fL�"� �

fR�"��Im GR
���"�. From the equations of motion for the

Hamiltonian (1), the local density of states is found to be
related to the ce T-matrix as Im �Gd;R

� �!�� �
jt�j�2Im �T�����!��, and the latter can now be obtained
using the effective Hamiltonian (3). To third order in
J�;�0 , we find that
Im �T�
0�
�0����� ��,�0�

3�
16
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X
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D
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��
; (5)

�����������������p

with the shorthand notation lnjD=xj � lnjD= x2 � T2j. In
the asymmetric limit considered here, we take �L � 0 and
bias the right lead to �R � �V, leaving the position of the
molecular energy levels unaffected, and for T � !0 � D
the differential conductance is then obtained from the
current as G�V� �� 2e2

�h �	R=	L�N�0�
P
�Im �T��LL �eV��.

From Eq. (5), the differential conductance appears to di-
verge as ln�D=T� at voltages corresponding to multiples of
the oscillator frequency, reflecting the onset of a Kondo
effect assisted by coherent vibron exchange. In Fig. 1, the
upper panel shows a gray-scale plot of @2I=@V2 as a
function of bias voltage and mean occupation number
(gate voltage). The lower panel shows three cuts revealing
the sideband resonances on the flanks of the central zero-
bias resonance.

By tuning the gate voltage to N � 1� �2!0=EC, one
reaches the particle-hole (PH) symmetric point where
"� � �"�, and using the general symmetry fn0n �
��1�jn

0�njfnn0 one finds from Eq. (4) that Jn
0n /

�1� ��1�jn
0�nj�, implying that all spin-exchange processes

involving the emission or absorption of an odd number of
vibrons are prohibited at this particular gate voltage. This
parity selection rule, reflecting the inversion symmetry of
the Kondo Hamiltonian (3) at low energies, has important
experimental bearings, since it predicts that all Kondo
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sidebands in the differential conductance located at volt-
ages equal to odd multiples of!0 must vanish when tuning
the gate voltage to the symmetric point, corresponding to
the midpoint of the Coulomb-blockade valley. This is
apparent in Fig. 1, where the conductance peak at V �
!0 disappears as N approaches the symmetric point (cf.
curve a). Note, however, that any appreciable vibron
modulation of the tunneling amplitudes will break the
inversion symmetry [12] and thereby destroy this selection
rule.

The logarithmic divergences appearing in third order
perturbation theory call for a resummation of leading
logarithmic contributions to all orders. This is done using
the perturbative renormalization group (RG) method for
frequency dependent couplings developed in Refs. [13,14].
Parametrizing the dimensionless couplings, gn0n �
N�0�Jn

0n
LL , by the total energy of the ingoing conduction

electron and vibron state, we arrive at the infinite hierarchy
of coupled (1-loop) RG equations:

@gn0n�!�
@ lnD

� �
1

2

X1
m�0

fgn0m�0�gmn��m� n�!0��!��n�m�!0

� gn0m��n0 �m�!0�gmn�0��!��m�n0�!0
g; (6)
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FIG. 1. Upper panel: @2I=@V2 vs bias and gate voltage, for
�2 � 3, N�0�jtLj2 � 0:1!0, D � EC � 8!0, and T � 0:01!0.
Black (white) indicates large negative (positive) values. Lower
panel: conductance vs bias voltage for three values of Vg
corresponding to the vertical black lines (a, b, c) in the upper
panel. The lower curve (a) corresponds to the PH-symmetric
point N � 1� �2!0=EC.
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with �! � ��D� j!j�. We shall restrict our attention to
the PH-symmetric point and assuming that �!0 � EC, we
may truncate this hierarchy and consider merely the lowest
four coupled equations involving g00, g02 � g20, and g22.
The solution to this reduced set of equations is character-
ized by the parameters

, �
g22 � g00
g00g22 � g220

; � �
2g20

g00g22 � g220
; (7)

and TK � De�2=�g00�g22�
��������������������������
�g22�g00�2�4g220

p
�, where gn0n �

gn0n�D; 2n!0�. All three parameters are invariant under
the perturbative RG flow from the initial cutoff D0 down
toD � 2!0. At scaleD0, we have �, ,� ��!0=EC�2=g00,
and therefore our truncation of Eq. (6) remains valid
throughout the RG flow roughly when
max��; ,�= ln�T=T�� � 1 (see below). Staying within the
perturbative regime, we assume that !0 � T � TK.

We first solve the RG equations for the constant coef-
ficients gn0n and the frequency dependent renormalized
couplings are then obtained simply by integrating Eqs. (6):

g00�!� �
1

ln�j!j=T��
�

�2

8ln2�2!0=T
��

X
8�0;1

�8�!�

�



1

ln�j!� 28!0j=T
��
�

1

ln�2!0=T
��

�
(8)
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�
4

X
8�0;1

�
1

ln2�max�2!0; j!� 28!0j�=T��

�
2�8�!�

ln�2!0=T��



1

ln�j!� 28!0j=T��

�
1

ln�2!0=T
��

��
; (9)

with T� � TK�TK=!0�
�
�����������
�2�,2

p
�,�=�2 ln�2!0=TK��

�����������
�2�,2

p
�,�

and �8�!� � ��2!0 � j!� 28!0j�. Note that in
Eqs. (8) and (9) we retain only terms which contribute to
order max��; ,�2=ln2�T=T�� in the conductance.

While the logarithmic singularities at ! � 0 are cut off
by temperature, those at ! � 2!0 will instead be con-

tained roughly by
�����������������
T2 � -2

p
, with - given by the transition

rate from vibron state j2i to j0i. Using the golden rule with
the renormalized coupling g20�!�, we find - �
�!0�

2=�4ln2�2!0=TK��. Similarly, the broadening of the
vibron states induces a broadening of the step functions in

Eqs. (8) and (9) by T or
�����������������
T2 � -2

p
for steps near ! � 0 or

! � 2!0, respectively. (cf. also Ref. [14]).
The renormalized conductance is now obtained by in-

serting in the formula G�V� � �2e2=h��	R=	L��3�
2=4��

�g00�eV�
2 �

P
8����8eV � 2!0�g20�8eV�

2�, and indeed
when expanding this result in bare couplings, we recover
the result obtained by expanding Eq. (5) to order
��!0=EC�4. Including the broadening in both couplings
and �, the result is plotted in Fig. 2. Notice the slight
resemblance to Fig. 3 of Ref. [15], obtained using a dia-
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FIG. 2. Conductance vs bias voltage using perturbatively re-
normalized couplings. Gate voltage is tuned to the PH-
symmetric point and �� 4:30, ,� 7:54, TK � 1:51� 10�4!0,
T� � 7:18� 10�8!0, and T � 0:05!0, i.e., �= ln�T=T�� �
0:32 and ,= ln�T=T�� � 0:56, corresponding to bare parameters:
�2 � 4:5, N�0�jtLj2 � 0:1!0, and D � EC � 8!0. Insets show
the renormalized couplings g00�!� and g20�!�, as well as a zoom
in the conductance curve showing the satellite peak on a separate
conductance scale but on the same voltage scale.
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grammatic real-time technique in the case where 	L � 	R
and !0 � TK. Since the nonperturbative approach used in
Ref. [15] omits certain classes of diagrams, which are
included to each order in our systematic perturbative ap-
proach, a detailed correspondence is not necessarily to be
expected even for 	L � 	R and TK � !0.

The possible decoherence effects arising when coupling
the oscillator to phonons within the leads remain an open
question. It is straightforward to generalize the Schrieffer-
Wolff transformation applied here to a system where the
molecule-oscillator is coupled to a separate bath of oscil-
lators. However, even determining the effects on the lead-
ing logarithms for a given Q factor involves a rather
involved cumulant expansion. We expect the Kondo effect
to be more pronounced when dealing solely with intra-
molecular vibrations, since these have been demonstrated
to have particularly large Q factors [16].

In the case of nearly symmetric couplings, we can no
longer assume the oscillator to be in equilibrium with the
conduction electrons of one specific side of the junction
[17]. In line with the findings of Refs. [15,18], we expect
that nonequlibrium effects may in fact serve to enhance the
Kondo side peaks.

In conclusion, we have demonstrated the viability of an
inelastic Kondo effect carried by coherent vibron-assisted
exchange tunneling, which can be observed as Kondo side-
bands in the nonlinear conductance. In contrast to the case
of an applied microwave field [19], the zero-bias resonance
is not suppressed by the vibronic coupling, and it may
therefore be difficult to discern the satellites from the
background conductance. Nevertheless, even with very
17680
weak satellites, it should be possible to track their depen-
dence on Vg (possibly in a plot of @2I=@V2) and thereby
test our prediction that satellites at odd multiples of !0 are
strongly reduced at the PH-symmetric point. Faint side-
bands to a zero-bias Kondo peak have indeed been ob-
served in the recent experiment by Yu et al. [5]. In contrast
to the findings reported here, however, both satellite peaks
and dips were observed in the nonlinear conductance. This
may hint at interference effects between Kondo sidebands
and other tunneling channels not included in the present
model.
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Wölfle for useful discussions. This research was supported
by the Center for Functional Nanostructures (J. P.) and by
the European Commission through project FP6-003673
CANEL of the IST Priority.
1-4
[1] M. A. Reed et al., Science 278, 252 (1997); R. H. M. Smit
et al., Nature (London) 419, 906 (2002); N. B. Zhitenev,
H. Meng, and Z. Bao, Phys. Rev. Lett. 88, 226801 (2002);
S. Kubatkin et al., Nature (London) 425, 698 (2003).

[2] H. Park et al., Nature (London) 407, 57 (2000).
[3] J. Park et al., Nature (London) 417, 722 (2002).
[4] W. Liang et al., Nature (London) 417, 725 (2002).
[5] L. H. Yu and D. Natelson, Nano Lett. 4, 79 (2004); L. H.

Yu et al., Phys. Rev. Lett. 93, 266802 (2004).
[6] L. I. Glazman and R. I. Shekhter, Zh. Eksp. Teor. Fiz. 94,

292 (1988) [Sov. Phys. JETP 67, 163 (1988)]; N. S.
Wingreen, K. W. Jacobsen, and J. W. Wilkins, Phys.
Rev. B 40, 11834 (1989).

[7] K. Flensberg, Phys. Rev. B 68, 205323 (2003).
[8] I. G. Lang and Yu. A. Firsov, Sov. Phys. JETP 16, 1301

(1963).
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