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Following recent interest in a kinetic description of the semiclassical Bloch electron dynamics, we
propose a new formulation based on the previously developed Lie-Poisson formulation of dynamics. It
includes modifications required to account for the Berry curvature contribution to the electron’s equation
of motion as well as essential ingredients of a quantum treatment of spin—% degrees of freedom. Our theory
is also manifestly gauge invariant and thus permits inclusion of the electron interactions. The scope of our
formulation extends beyond its solid state physics motivation and includes recently discussed non-
commutative generalizations of classical mechanics as well as historically important models from

quantum gravity physics.
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Recent theoretical [1] and experimental [2] works have
shown that in several important solid state physics appli-
cations the motion of charge carriers can be described by
semiclassical equations of motion in which the positions of
the centers of the localized electron wave function in k and
r spaces obey the equations of motion:

. . 0e(k)
k = F/h -
M=

Q is the Berry curvature of the Bloch state |k), and F is the
net force acting on the carrier (e.g., in the presence of an
external electric field F = ¢E, = —eVU). These equa-
tions differ from the “standard” semiclassical equations
of motion for Bloch electrons [3] in that they contain the
Berry curvature €2, defined by [4]

Q (k) = iViug| X [Viuy). ()

+ F X Q/h. (1

Here uy (r) is the periodic part of the Bloch function at
wave vector k for a specific band, and the integral implied
by the bracket is over the unit cell of the lattice. Briefly, this
term is obtained by carefully following the evolution of the
factors involved in constructing a wave packet from Bloch
functions [1]. Because € is gauge invariant, it is poten-
tially observable and is, in general, nonzero for crystals
without inversion symmetry [5]. Zak [5], in an extension of
Berry’s ideas [6], first pointed out that Bloch systems
naturally yield geometric phases. Equations (1) assume,
for the sake of simplicity, that only a single band with
energy e(k) is important. In what follows we define p =
fik and incorporate 7 into the definition of €). Similar
equations describe the motion of ultracold atoms in an
optical lattice [7].

In our earlier publications we have shown how the
dynamics of a variety of interesting physical systems can
be formulated in a compact and convenient way using the
symplectic Lie-Poisson bracket technique [8]. In this
Letter we show how the phase-space dynamics for semi-
classical spin-% Bloch electrons can be cast into the same
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form. We begin by writing the symplectic Lie-Poisson

brackets for carrier position “r” and momenta “p” in
the form

{rar ph}: 5ab’ {pw ph}:() (3)

Note that in classical dynamics the Poisson brackets be-
tween the position components vanish. Equation (3) is the
special form of the noncommutative classical mechanics
discussed extensively in [9]. It is also interesting to recall
that the “noncommutativity”’ of positions in (3) is analo-
gous to that postulated in early works on quantum gravity
[10]. Defining the carrier Hamiltonian as H(r, p) = e(p) +
eU(r), we find that the canonical equations of motion

Fo ={re, H}; Pa = {pa H} 4

are, in fact, identical to the equations of motion (1).

In a recent Letter [1] a kinetic description of carriers and
a Boltzmann-like kinetic equation for the carriers’ single-
particle distribution function were proposed. In this Letter
we obtain a more general kinetic equation by following the
“second quantized’” formulation of kinetic theory devel-
oped by Klimontovich [11] and extended for charged,
relativistic particles [12] and for classical particles with
spin [13].

We begin by developing the formalism for spinless
carriers, in which the basic variable describing the state
of the system is the single-particle distribution function
f(r, p, 1), and the Hamiltonian is considered to be a func-
tional of f. For noninteracting particles this is the linear
functional H{f} = [d1H(1)f(1), where 1 = (r, p). The
mean value of the physical quantity A is obtained as (A) =
[ d1f(1)A(1). In the semiclassical formulation f possesses
all the properties of the classical distribution function; i.e.,
it is non-negative and normalized. The quantum descrip-
tion can then be obtained by replacing f with the Wigner
distribution function fyw(r, p) [14] and the Lie-Poisson
brackets defined below with the properly adapted form of
the Moyal brackets [15]. To obtain the kinetic equation

{rw rb} = Sachw
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governing the evolution of f, one has to (i) define the
symplectic bracket for f, and (ii) supplement the resulting
Hamiltonian (nondissipative) equation of motion for f with
a properly chosen dissipative part (e.g., the collision inte-
gral). The symplectic Lie-Poisson bracket for f is (6 =
a/ar, d = a/op)

{fQ), f@)} = V£(1) - §8(1 — 2) — 3f(1) - Vo (1 — 2)
+Q-[VF1) x V81 - 2)]. (5)

The nondissipative kinetic equation for the single-particle
distribution function becomes now

SH{f}
8f(2)

The dissipative equation is obtained by adding to the right-
hand side of (6) the proper dissipation operator W{f}. The
choice of W{f} depends on the nature of the physical
problem discussed. In [1] the relaxation time approxima-
tion was used in view of its simplicity. We believe that the
collision operator proposed in [16] is more appropriate,
because it offers the simple generalization of the
Boltzmann-Lorentz [17] collision integral for the lattice
gas (tight binding) models. Although our formulation is
valid for arbitrary Berry curvature €2, in specific applica-
tions discussed below we assume that € is a slowly vary-
ing function of the wave vector k as it traverses the
Brillouin zone. This implies that the average value of the
Berry curvature ) = [dpQ(p)e(p) and the average
“curvature torque” E,, = [dpQ,(p)p,e(p)/m do exist.
Here and throughout this work ¢(p) is the equilibrium
momentum distribution for the carriers at “inverse tem-
perature” B defined as [ dpe(p)p;p; = m8;;8".

A simple Chapman-Enskog-like approximation assumes
that for higher momentum moments of the distribu-
tion function [e.g., the stress tensor Pij(r, 1) =
[dpp;p;f(r,p,t)/m, average Berry curvature Q(r) =
[dpQ(p)f(r,p), etc.] one can make the approximation
f(r,p) = ¢o(p)p(r). Using this approximation and the ex-
plicit dissipative operator W{f} from [16], we obtain the
dispersion relation for the density fluctuations pg ,,, which
replaces Ohm’s law for spinless Bloch electrons:

[d)((]) + lZFq][(I)(q) - lSqrq]
—{q*/(mB) — eq - [Eg X (E - q)] + ieEq - q/m}. (7)

Here @(q) = w — eq - (Q X E,), Iy, Sq. and z are the
scattering amplitude, scatterers’ structure factor, and the
coordination number, respectively, and Q, = are the aver-
age Berry curvature and curvature torque. Equation (7)
shows the frequency shift due to the anomalous Hall drift
velocity eQ X E,.

Next we generalize our model for spin—% carriers. In
order to do so, we describe the state of the carriers by a

2 f1 0 = (), H{fH = ] a2 (), F 2 6

spinor distribution function (density matrix) f (r,p) = % X

Z:O fa0 o, Where & is the 2 X 2 unit matrix and &, i =
1, 2,3, are the usual Pauli matrices. The meaning of the
spinor components f, follows from the definition of the
mean value of the observable A, (A) = Tr(A f), where Tr
denotes the matrix trace in spinor space and integration
over the phase-space variables (r, p). f, is the distribution

function used for the spinless carriers, and f,
are the particle spin densities: (S;) = Tr(S;f) =
A1 Te(t 6,5 ofu6a) =% [d1f;(1). Note that the nor-

mahzatlon of f, guarantees conservation of the spin length
(8 =1 [d1fy(1).

For splnor distribution functions the generalized Lie-
Poisson bracket (5) becomes now a functional 4 X 4 ma-
trix:

) Fay] — (VoL@ o). £,@)
wgen= (i nan v ) ©

for i, j = 1,2, 3. The bracket {f,,(1), f,(2)} is given by (4)

and
{£:1), fo@)} = V£,(1) - 351 - 2),
{f:(1), f,(Z)} = Sijkfk(l)‘s(l —-2)

Now the kinetic equation for the density function spinor f
becomes

(€))

afgl, D = [f), A + W)
t
({f)} LW, 10)

Note that the dissipative operator W must preserve the
length of the spin S%. The definition of {f; f,} in (8)
guarantees that the spin length is a Casimir invariant of
our Lie-Poisson algebra of spinors f .

The relaxation of the spin degrees of freedom, accounted
for by the dissipative operator W, was described in [2] by
the relaxation time approximation to the collision operator.
This approximation can be justified by an analysis of the
fully quantum-mechanical collision operator used in the
kinetic theory of particles with angular momentum degrees
of freedom [18]. This is, however, not the only possible
way. The collisions with impurities which change the
electron spin direction but preserve the spin magnitude
can also be described by a properly tailored version of
the Gilbert-Landau spin damping discussed in some mod-
els of the dissipative Heisenberg magnet [19]. In this
description the damping is described by supplementing
the Lie-Poisson bracket by the dissipative bracket, which
in our case will read, in the notation of [8],

< fi), £;(2) >= —AL3;;0(p2)6(1 — 2) — fi(1)f;(2)]
(11
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where A is the proper damping coefficient proportional to
the transverse inverse relaxation time for spin relaxation.
The dissipative operator W assumes then the form

SH{f}
8f(2)
It is still possible to add to the dissipative operator (12) the
relaxation time collision operator discussed in [1].

The problem of reconciling the Bloch description of an
electron in a periodic potential with the usual vector po-
tential description of the magnetic field and the necessity
of securing gauge invariance has been the subject of in-
tensive discussion [20]. Here we propose the extension of
the phase-space description for charged particles devel-
oped in [12,13], which automatically guarantees the gauge
invariance of the theory. Thus now the state of the system
of semiclassical spin-% Bloch electrons is described by a
collection of three fields: the defined above spinor field f
and two vector fields E and B, the electric and the mag-
netic field, respectively.

The Lie-Poisson brackets for these variables are defined
as follows. The spinor field obeys the bracket relations (8),
where now

{fo(D), fo2)} = Vfo(1) - 361 = 2) — df,(1) - V&1 — 2)
+ Q- Vfy(1) X V6(1 — 2) + eB(1)
Safo(1) X §6(1 — 2), (13)

Wu®=]ﬂ<ﬂuﬂﬂ> (12)

and the additional bracket relations are given as

{Ei(r)), Bj(ry)} = —£,4V6(r; — 1),
{fo(1), EQ2)} = —edfo(1)5(1 - 2),
{fa(l): B(Z)} = {fz(l)’ E(Z)} = 0 (14)

(a=0,...,3, i =1,2,3). The Hamiltonian functional
now depends on these three basic fields and reads

3
mﬁamzfmhmdn+gﬁﬂ2ﬁm%m
=1

+ L f dr(E> + B). (15)
8

The Hamiltonian (15) is the classical Hamiltonian from
[12] supplemented with Zeeman-like coupling terms pro-
portional to » ;f;B;. There is no place here for adding
terms which would mimic the Pauli spin-orbit coupling.
The latter will follow from a more comprehensive deriva-
tion of the equations of motion for spin-charge carriers
than that used to establish (1). Issues posed by spin-orbit
coupling in combination with Berry phases are important
problems for further research.

The equations of motion for state variables f E, B are
now given by (10) and

dB(r, 1)

oE(r, 1) _ _
at

Fran {E(r), H},

{B(r), H}. (16)

Equations (16) are two of Maxwell’s equations for the
electromagnetic fields E and B, containing the spin con-
tribution to the internal magnetic field of the system stem-
ming from the term 7y [dl Z?:I f;(1)B;(1) in the
Hamiltonian (15). Note that this Hamiltonian is just the
sum of the kinetic energies for the corresponding compo-
nents of the system. The whole interaction is now con-
tained in the Lie-Poisson brackets for the state variables.
The full discussion of this point was given in [12].

To see the usefulness of this proposed phase-space de-
scription, we apply our formulation to the analysis of the
weakly interacting set of semiclassical Bloch electrons in
the absence of the magnetic field and neglecting the effect
of collisions. It is sufficient then to use the spinless distri-
bution function f. The Maxwell equations (16) reduce then
to the Poisson equation for the electric field

V-E=4dmep, VXE=0, (17)
where the particle density p is defined as before through
the momentum integral of f. Writing now equations for
two first moments of f, assuming that the pressure tensor is
diagonal, P;; = [dpp;p,f(r,p)/m = 6;;P(p), and lin-
earizing them around the state characterized by constant
carrier density p, and constant external electric field E,
we obtain with the use of (17) the dispersion relation for
the system excitations:

[0 — eq - (@ X Eg) = @(q)’
. e
= (l)%p + Ciquq] + Zq N Eo. (18)

Here, as usual, w and q are the excitation frequency and
wave vector, respectively, w p = +/4me’ po/m is the plasma
frequency, ¢;; = ¢*(8,;; — &;Eo¢Eyj/c?), and ¢ = %)0
is the speed of sound in the carrier gas. One sees that the
excitation group velocity is shifted with respect to that of
the usual plasma wave in the frame of reference drifting
with the anomalous Hall velocity v, = eQ X E, and that
the sound velocity is anisotropic (c*q> — ¢;;q'g’) due to
the coupling between the external electric field and the
Berry curvature torque E.

We conclude this Letter with an analysis of the kinetic
Eq. (10) using the dissipative operator (12) in the absence
of the external electric field and neglecting the internal
electric and magnetic fields generated by motion of the
charged carriers and described by the solutions of (16).
Using the resulting expression for the Hamiltonian (15)
and the form of the dissipative operator (12), we derive
the conservation equation for the spatial spin density
S;(r) = [dpf(r, p) by integrating (10) over the momenta:
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w+6-A(r,t)=ySXB—ASX(SXB), (19)
t

where the spin current tensor A;; = [dpp;f;(r, p). As it
stands, Eq. (19) is the convective version of the Gilbert-
Landau equation for the system magnetization widely dis-
cussed in the theory of magnetism literature [20]. The
absence of the external electric field cancels the Berry
curvature contribution to the spin density evolution equa-
tion. The Berry curvature will appear if the internal electric
field due to carrier dynamics is included in a fashion
similar to (18).

The equation of motion for the spin current A follows
from (10) by multiplication by p and integration over the
momenta. As usual, this will not be a closed equation,
because it involves the third-order tensorial current Q;j; =
[dpp;p;fi. for which we would require something like
the lowest order Chapman-Enskog assumption f; =
@(p)S;(r). Using this approximation we find for the spin
current equation

% + BIVS, = 7, + AAS - B,
where 7;; = y&;,,A;B,, is the magnetic torque tensor.

We show in this Letter that the dynamics of an ensemble
of the semiclassical spin-1 Bloch carriers can be described
using an algebraic procedure discussed by us before for
many other physical models [8], using as building blocks
the phase-space distribution spinor and the electric and
magnetic fields. We show how the noncommutativity of
the position variables, resulting from the Berry curvature
contribution to the equations of motion, can be incorpo-
rated into the Lie-Poisson brackets for field variables. We
outline how the hydrodynamics (moments equations) for
the kinetic equations can be formulated in the presence of
various different types of dissipative processes. We also
show a few explicit examples of how our approach works.
For example, we predict Berry curvature-dependent shifts
of the plasma frequency and the sound velocity for the
semiclassical Bloch electron plasma.

One of us (L. A.T.) expresses his appreciation for the
hospitality of the Physics Department of Wake Forest
University during the preparation of this work.
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