PRL 94, 176401 (2005)

PHYSICAL REVIEW LETTERS

week ending
6 MAY 2005

Observation of Two-Dimensional Classical Wave Localization: Third Sound
on Superfluid *He Films on a Disordered Substrate
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We present the results of measurements of the propagation of third sound waves on superfluid *He
adsorbed to two-dimensional ordered and disordered substrates. In the disordered case we compare the
experimental results to theoretical predictions of classical wave localization in such systems and conclude
that classical wave localization is present in our system.
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Wave localization is a phenomenon of widespread im-
portance. Anderson first predicted the existence of local-
ization in quantum electronic systems [1] and later wave
localization was predicted to be achievable in a variety of
classical systems [2—6]. The presence of localization in
diverse physical systems is due to the ubiquitous existence
of waves in nature and because localization is in its essence
a purely wave phenomenon. Localization is the spatial
confinement of a wave and its energy; extended states are
not possible in a system that is localized. The signature of
localization is that the time averaged wave amplitude, |/,
exponentially decreases as || ~ e /¢, where x is the
distance from the wave source. The localization length,
&, characterizes the length scale of the wave confinement
and is a quantity of primary interest.

Localization occurs in systems where wave scattering
sites are arranged in a random, disordered manner. The
ability of a system to exhibit localized states depends on
the characteristics of the random media. In conducting
electron systems the mean free path is often much larger
than the electron wavelength and the systems are said to
exhibit weak localization. In classical systems [7] it is
possible to achieve the opposite situation where the exci-
tation wavelength is commensurate with or larger than the
scattering mean free path, a situation termed strong local-
ization. We report here the results of experiments that use
third sound surface excitations of thin superfluid *He films
to investigate the strongly localized regime for a two-
dimensional classical system.

Third sound is a thickness and temperature fluctuation
that can occur on atomically thin superfluid helium films.
The speed of a third sound wave on a thin helium film of
thickness d on a smooth surface is given by [8] C3 =
(ps)/p)Fd, where ({p,)/p) is the effective superfluid
fraction in the film [9]. The restoring force, F, is dominated
by the van der Waals attraction, which for thin films can be
approximated as F = 3a,/d*, where the van der Waals
constant is a, = 27 (layers) *K for helium on glass [10]
and one layer of helium is defined [8] as 0.36 nm. The
speed of third sound on a rough surface, such as thermally
deposited CaF, [11], is less than that on a smooth surface
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[12] and therefore patches of rough CaF, deposited on a
smooth glass substrate can effectively scatter third sound
[13]. The effectiveness of using third sound to investigate
wave phenomena in one-dimension, including localization,
has been shown previously [14-16].

Much theoretical effort has been expended to calculate
the localization length, &, for a variety of systems. Cohen
and Machta [5] have used a course grained approach to
calculate ¢ for third sound propagating in a two-
dimensional disordered medium. By assuming that the
characteristic times and lengths associated with the scat-
terers are much shorter than those of third sound they have
shown [5] that the only quantity needed for scatterer char-
acterization is « = dAV/dd, where AV is the excess
volume of fluid adsorbed to a single scatterer and d is the
equilibrium helium film thickness on a smooth surface
away from the scatterer. The system is characterized by
the index of refraction of third sound through the system,
which is given by n, = Cy/C, = (1 + pyk)'/?, where C,
is the speed of third sound on a clean smooth substrate
without scatterers and C, is the speed of third sound on the
disordered substrate with an average areal density of scat-
terers of pg [17].

Using these assumptions Cohen and Machta [5] have
shown that the frequency-dependent localization length,
&(E), is given by

E(E) = U(E)eBo/PP, (1)

which is valid in the low frequency regime (E < Ey),
where E = 27f, f is the third sound frequency, E; is a
constant, and /(E) is the scattering mean free path. £(E) is
strongly divergent as E — 0, but rapidly decreases toward
the scattering length as £ — E;. Writing E, and [(E) in
terms of experimentally accessible quantities for third
sound Cohen and Machta [5,18] find that
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In this Letter, we present third sound data consistent with

the predictions of Eq. (2).
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The substrate used to investigate localization was a plain
glass substrate of dimensions 5.08 X 2.54 cm with two Ag
third sound generators and six thin-film Al superconduct-
ing transition-edge detectors deposited on it and arranged
as shown in Fig. 1(a). The superconducting detectors re-
cord the presence of third sound by detecting the associated
temperature fluctuation. Scatterers were then deposited on
the surface of the substrate covering a lateral area 2 cm
wide and decorating the full length of the substrate. The
scatterers were formed by evaporating 300 nm of CaF,
onto the substrate through a thin brass shim stock mask that
was perforated by 1514 randomly drilled holes of diameter
a = 0.2505 mm. The scatterer positions were determined
using a random number generator and do not overlap. The
scatterers have a packing fraction of po7ma’> = 0.3 with a
mean scatterer density of p, = 152.2 cm™2. A substrate
with a periodic (i.e., ordered) arrangement of scatterers
was also fabricated to provide a direct comparison to the
disordered data, as shown in Fig. 1(b). A plain glass sub-
strate with no CaF, and a fourth substrate uniformly coated
with 300 nm of CaF, were also used in the experiment,
each with a single third sound driver and detector.

(a) Ag&BCDEFS

(b)
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FIG. 1. Schematic representation (not to scale) of the
(a) disordered and (b) ordered substrates. The solid lines shown
with solid black circular contact pads located at each end are the
third sound generators and detectors. g; and g, indicate the third
sound generators on each substrate and uppercase (lowercase)
letters indicate the third sound detectors on the disordered
(ordered) substrate. The lightly shaded circles represent the
CaF, scatterers.

Transmission data [19] were collected at four different
“He film thicknesses that spanned the range 5.43 = d =
11.41 layers. The nominal “He film thickness was deter-
mined using the approximate relation d° =
a, /[T n(Py/P)], where P is the vapor pressure in the
sample cell and P, is the saturated vapor pressure at
temperature 7. The samples were mounted in a brass
sample chamber, placed in a standard “He pumped-bath
Dewar, and operated at a temperature of 7 = 1.650 K. The
temperature was regulated to ~1 mK during the course of
the measurements.

The transmission spectrum for third sound propagation
across the substrates was determined by applying a con-
tinuous sinusoidal voltage to a selected third sound gen-
erator on a substrate and monitoring the response at a
specific detector. The amplitude was measured as a func-
tion of frequency by monitoring the voltage drop across the
current-biased superconducting detector with a lock-in
amplifier operating in “2f”’ mode. Since the third sound
was generated thermally, the frequency of the waves was
twice the drive voltage frequency. All data reported here
are given in terms of the third sound frequency. In this way
the amplitude transmission spectrum was measured as a

(a) Ordered

(b) Disordered
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FIG. 2. Third sound amplitude in arbitrary units for
(a) detector a on the ordered substrate [Fig. 1(b)] and
(b) detector B on disordered substrate [Fig. 1(a)] versus fre-
quency. The generator-detector distance was 3 mm. The waves
originated at g; in both cases. Instrumental noise is typically
small as seen in the gap near 10 kHz for the ordered case. Data
for an unpatterned substrate have been shown previously [13].
The helium film thickness is d = 5.43 layers for these data.
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function of frequency for each of the third sound generator-
detector pairs on the ordered and disordered substrates.

Pulsed third sound was also measured on the plain and
uniformly coated substrates by applying a 50 ws-wide
square-wave voltage pulse to the third sound generator
and measuring the time it takes for the pulse to arrive at
the detector. This allows us to determine the speed of third
sound across these surfaces.

The most obvious evidence for the presence of localiza-
tion is the comparison between the third sound amplitude
on the disordered and ordered substrates. Figure 2 shows
these amplitudes for a “He film thickness of d = 5.43
layers as observed at a detector located at a distance of
3 mm from the wave source. The passband present on the
ordered substrate near 20 kHz is clearly absent in the
disordered data indicating that the disorder effects the
frequency dependence of the amplitude in a manner con-
sistent with localization. The amplitude on the disordered
substrate falls to zero as frequency increases and does not
increase significantly at higher frequency. These features
are typical of the data collected at all “He film thicknesses
and all third sound generator-detector separations. The
general behavior is similar to that seen previously for a
different type of scattering site in the one-dimensional case
[14]. While the data for one dimension and two dimensions
look similar, the frequency dependence of the localization
length is very different, which alters the behavior along the
frequency axis. The jagged nature of the amplitude curves
is likely caused by resonant modes induced by the geome-
try of the substrate [14]. Instrumental noise also likely
contributes somewhat to the sharp features.

In order to do a quantitative analysis of the disordered
substrate data we must account for ordinary third sound
attenuation, which can mimic localization effects.
Attenuation decreases the measured third sound amplitude
with distance as || ~ e~**, where « is the attenuation
coefficient. For the data presented here we can use the thin-
film approximation for a predicted by Bergman [20] and
corrected to fit our data. To estimate the experimental
attenuation coefficient for our disordered substrate we
use the prediction of Bergman and compare that to the
ordered substrate data. We find that the frequency depen-
dence of Bergman’s attenuation coefficient, ap, is suffi-
cient to describe the frequency dependence of the data.
However, we need to multiply ay by a thickness dependent
coefficient, Ay(d), to describe the thickness dependence of
the data. Therefore our experimentally determined esti-
mate of the attenuation coefficient on the disordered sub-
strates is & = Ay(d)ay, where Ay(d) is found to have the
form of Ay(d) = 0.01d>. Bergman [20] predicts that ap ~
d~5/2, in contrast to our results that suggest that o ~ d'/2.

To compare our experimental results to the theory of
Cohen and Machta [5] we have calculated the time aver-
aged amplitude of the wave as a function of frequency
using [21]

| = e &), 3)

where we have included both localization and attenuation
effects. ¢ was calculated using Eq. (2) with py =
152.2 cm™? and C, was determined experimentally for
each value of d with n a free parameter. & was determined
as discussed in the above paragraph. We compare our data,
normalized such that in each case the amplitude trend is to
unity as f — 0, to the prediction of Eq. (3). Figure 3, which
is representative of all of our data, shows the comparison
for x = 3 mm and x = 6 mm for d = 5.43 layers and d =
10.67 layers. The smooth lines calculated from Eq. (3)
have two main features. The initial gentle drop in ampli-
tude at low frequencies is due entirely to the attenuation
term, while the sudden more abrupt drop in amplitude with
frequency at somewhat higher frequencies is due to the
localization term in the exponent of Eq. (3). The position of
the sudden drop in frequency is determined to some degree

(a)
d = 5.43 layers
x =3 mm

(b)
d =5.43 layers
x=6mm

(0)
d =10.67 layers|
x=3mm

Amplitude (arb. units)

(d)
d =10.67 layers
X=6mm
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FIG. 3. Third sound amplitude as measured at detectors B and
C as a function of frequency for generator g, for (a) d = 5.43
layers and x =3 mm, (b) d = 5.43 layers and x = 6 mm,
(c) d = 10.67 layers and x = 3 mm, (d) d = 10.67 layers and
x = 6 mm. The lines connecting adjacent data points are a guide
to the eye and the smooth solid lines are the calculated results of
Eq. (3).
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TABLE I. Values of the deduced experimental parameters for
each “He film thickness. The values of n, are as determined by
the comparison of the data and Eq. (2), and E,/(27r) is calculated
using the so determined values of n;.

d (layers) C, (m/s) ng Ey/(2m) (kHz)

543 21.7 1.70 9.6

6.32 18.2 1.63 8.8

8.36 12.8 1.60 6.5
10.67 9.3 1.58 4.8
11.41 8.5 1.57 4.5

by our free parameter n,. n; was found to be constant for
each value of d (i.e., Cy) and the results are given in Table 1.
The agreement between the experimental data and the
theory shown in Fig. 3 is quite good, particularly with
regard to the features due to localization. This sudden
decrease in received amplitude cannot be explained by
attenuation. The agreement with theory provides compel-
ling evidence that localization is present in this two-
dimensional system.

The valid application of the theory of Cohen and Machta
[5] requires that a scatterer be in local equilibrium with the
fluid associated with the propagating third sound wave.
Basically this requires that the third sound wavelength be
longer than the length scale of the scatterers. Since the
theory is valid only for f < E,/(2), for the region of
parameter space investigated here the minimum third
sound wavelength would be n,Cy/(Ey/27) = 3.4 mm
compared to the scatterer radius a = 0.2505 mm. The
features in the data that are relevant to localization occur
roughly at a wavelength of twice this. In addition, the
theory of Cohen and Machta [5] requires that an extra
amount of adsorbed fluid, AV, be associated with each
scatterer to provide the scattering mechanism. In the case
of CaF, it has been shown that for 300 nm CaF,, the areal
density of adsorbed “He is, depending on the value of the
chemical potential, up to 10 times greater than that of a
smooth surface [12]. Therefore we expect that both of these
criteria are satisfied.

We have shown that high frequency propagating third
sound modes are not present on our two-dimensional dis-
ordered substrate, in direct contrast to what is observed on
the ordered substrate. In addition, when experimentally
determined attenuation is taken into account, we have
shown the correspondence between our data and expecta-
tions based on the theory of Cohen and Machta [5]. These
results are strong evidence that two-dimensional classical
wave localization is present in this system.

We thank J. Machta for productive discussions. This
work was supported by the National Science Foundation
under Grants No. DMR-0138009 and No. DMR-0213695
(MRSEC) and also by research trust funds administered by
the University of Massachusetts—Ambherst.
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