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Dynamic Model of Super-Arrhenius Relaxation Rates in Glassy Materials
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Super-Arrhenius relaxation rates in glassy materials can be associated with thermally activated
rearrangements of increasing numbers of molecules at decreasing temperatures. We explore a model of
such a mechanism in which stringlike fluctuations in the neighborhood of shear transformation zones
provide routes along which rearrangements can propagate, and the entropy associated with critically long
strings allows the rearrangement to be distributed stably in the surrounding material. We further postulate
that, at low enough temperatures, these fluctuations are localized on the interfaces between frustration-
limited domains, and in this way obtain a modified Vogel-Fulcher formula for the relaxation rate.
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Recent developments in the shear-transformation-zone
(STZ) theory of amorphous plasticity [1,2], especially its
success in accounting for the behavior of bulk metallic
glasses [3,4], have prompted us to take a fresh look at the
super-Arrhenius rates that characterize relaxation mecha-
nisms in such materials. In our STZ calculations so far, we
have simply deduced these transition rates from measured
linear viscosities and used them in predicting, for example,
nonlinear plastic responses to driving forces. To make
further progress, it will be useful to have a deeper under-
standing of the physical mechanism that underlies these
rates. (See [5] for a recent summary of a wide variety of
research in this and related fields.)

The main assumption of the STZ theory is that a deform-
able glassy material is fundamentally an elastic solid in
which irreversible molecular rearrangements occur at spe-
cial sites—so called ‘‘flow defects’’ or ‘‘STZ’s’’[6–8].
The STZ theory therefore differs from mode-coupling
theories [9,10] whose starting point is a liquidlike model.
Our version of STZ theory differs also from the earlier
flow-defect theories in that it models the defects as two-
state systems that carry information about the internal state
of the material. In this way, the theory describes both the
onset of plastic flow at a yield stress and a variety of
memory effects.

In our most recent version of the STZ theory [4], we
characterized the configurational degrees of freedom, i.e.,
the inherent states of the system [11], by an effective
disorder temperature which, under nonequilibrium condi-
tions, can be different from the temperature of the thermal
bath. We supposed that the STZ’s are especially deform-
able local density fluctuations that are far out in the wings
of the effective thermal distribution. Our implicit assump-
tion was that only a narrow range of these configurational
fluctuations is sufficiently deformable yet populous enough
to participate in plastic deformation. We are concerned
here with several different but closely related transforma-
tion rates pertaining to the STZ’s. Specifically, we want to
compute the rate at which STZ’s switch from one orienta-
tion to another during shear deformations, the rates at
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which they are created and annihilated, and the rate at
which the effective temperature relaxes toward the tem-
perature of the heat bath. More generally, we are interested
in the mechanisms by which an amorphous solid makes
transitions between its inherent states.

As has long been recognized in theories of glass dynam-
ics (e.g., see Adam and Gibbs [12]), a qualitative reason
why transition rates become anomalously slow at low
temperatures is that, as the temperature decreases, the
statistically most probable transition states are those that
involve increasingly large numbers of molecules. There
have been several recent attempts to make this idea more
precise. Notably, Xia and Wolynes [13] have postulated
that the transitions are nucleated by liquidlike droplets
characteristic of an incipient random first-order transition
between solidlike and liquidlike (jammed and unjammed)
phases. This postulate, plus some scaling analysis, pro-
duces the Vogel-Fulcher result. An alternative picture has
been proposed by Garrahan and Chandler [14], whose
transitions are enabled by fluctuating patterns of mobile
defects in an otherwise jammed system. The mobility of
these defects—as opposed to our immobile STZ’s—pro-
duces distinctive behavior in this model. In particular,
Garrahan and Chandler conclude that relaxation times
should obey the Arrhenius formula only at low tempera-
tures rather than, as is more commonly supposed, changing
from Arrhenius to super-Arrhenius as the temperature
decreases. So far as we can tell, neither of these approaches
attributes enough structure to the transition mechanism to
describe the stress-driven change from thermally assisted
viscous creep to superplastic flow that emerges from the
present STZ theory. Our purpose here is to examine a
transition mechanism that relates directly to our dynamical
model of the STZ’s.

The model that we shall explore is motivated in part by
work of Glotzer and colleagues [15,16], who discovered in
molecular-dynamics simulations that transitions between
inherent states in glass-forming liquids take place via
motions of stringlike groups of molecules. We postulate
that, at temperatures low enough that most of the system is
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tightly jammed, localized molecular rearrangements might
be entropically enabled by strings of small molecular dis-
placements that distribute the disturbance throughout
larger parts of the material. In granular materials, our
hypothetical mechanism might be visualized as a kinetic
fluctuation that allows molecules to undergo small dis-
placements along a force chain.

For simplicity, consider first just the spontaneous STZ
creation rate, that is, the rate at which STZ’s are created by
thermal fluctuations in the absence of external driving. It is
useful to think of STZ creation as an event in which the
glassy analog of a vacancy and an interstitial first form,
then move away from one another, and finally stabilize at
an indefinitely large separation. More generally, the for-
mation of a STZ is a spontaneous increase in the configura-
tional disorder of the system, as measured by the intensity
of density fluctuations. Suppose that, with a probability
that we must calculate, the material in the neighborhood of
this event contains a string of relatively loose molecules
that provides a route along which the ‘‘vacancy’’ and the
‘‘interstitial’’ can propagate. Our strategy is to estimate the
height of the free-energy barrier over which this system
must fluctuate in order for it to become energetically
favorable for the string to lengthen without bound. When
that happens, we postulate that a dynamically stable STZ
has formed. In short, we propose to solve a nucleation
problem where the reaction coordinate is the length of
this string. The entropy associated with different string
configurations is a measure of the number of routes across
this energy barrier and, therefore (see [17]), reduces the
free energy of the barrier for purposes of computing the
nucleation rate.

To describe the string model outlined in the preceding
paragraphs, we let the string have length N in units of some
characteristic molecular length, say, ‘, and suppose that it
occupies a region of size R in the neighborhood of the
emerging STZ. The total excess free energy of the system
consists of several parts, which we denote:

�G�N;R;T���G1�Ne0�TS�N;R��Eint�N;R�: (1)

The first term, �G1, is the bare activation energy for the
transition, that is, the energy required to form the vacancy
and the interstitial. Until these two defects separate from
each other, it will be energetically favorable for them
simply to recombine; thus, especially at low temperatures,
we need the string to enable the system to reach a stable
configuration. At high enough temperatures, �G1 ought to
become the ordinary Arrhenius activation energy.

The remaining terms on the right-hand side of Eq. (1)
describe the string. e0 is the energy per unit step along it.
S�N;R� is its entropy, which we obtain by computing the
number of random walks of N steps extending a distance R.
In the limit of large N, the number of such walks, say
W�N;R�, is approximately
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W�N;R� � const� qN exp
�
�

R2

2N‘2

�
; (2)

where q is the number of choices that the walk can make at
each step. Thus,

S�N;R� � �kBN � kB
R2

2N‘2
; � � lnq: (3)

The last term in Eq. (1), Eint�N;R�, is a repulsive inter-
action energy that accounts for the fact that no two pieces
of the string can occupy the same position at the same time.
This part of the analysis resembles Flory’s calculation of
excluded-volume effects in polymers [18]. Following
Flory, we assume that Eint�N;R� is approximately the
square of the string density integrated over the volume
occupied by the string. Therefore, using Flory’s mean-field
approximation, also in the limit of large N, we write

Eint�N;R� � kBTint
N2‘d

Rd ; (4)

where kBTint is a repulsive energy (which contains dimen-
sionless geometric factors) and d is the dimensionality of
the space in which this string exists. As we shall argue, it is
not necessarily true that d � 3.

Combining these terms, we have

�G�N;R;T�
kB

�
�G1

kB
��N�T�T0��T

R2

2N‘2
�Tint

N2‘d

Rd ;

(5)

where T0 	 e0=��kB�. The activation barrier is a saddle
point in the N, R plane. That is, it is a minimum of
�G�N;R; T� as a function of R (the smallest free energy
for fixed N) and a maximum as a function of N (the highest
point along the reaction path). The two R-dependent terms
have a minimum at R � R
�N; T�, where

�R
�N; T��d�2 /
N3

T
; (6)

which is the Flory expression for the swelling of a
d-dimensional polymer chain. Inserting this result into
the R-dependent terms in (5), we find that the activation
energy has the following form as a function of N:

�G
�N; T� � �G�N;R
; T�

� �G1 � const� Td=�d�2�N�4�d�=�d�2�

� �NkB�T � T0�: (7)

The second term on the right-hand side is positive and, for
1< d< 4, is dominant for small enough N; the third term
dominates at large N. For T > T0, the activation energy
goes through a maximum at N � N
�T�, where

N
�T� /
�
Td=�d�2�

�T � T0�

�
�d�2�=2�d�1�

: (8)
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As in conventional nucleation theory, this fluctuation most
probably will collapse for N <N
, but will grow without
bound if N becomes larger than N
. Thus the activation
energy �G
�T� is the value of �G
�N; T� at its maximum,
that is,

�G
�T� � �G�N
; R
; T�

� �G1 � const�
Td=2�d�1�

�T � T0�
�4�d�=2�d�1�

: (9)

For the naively expected case of d � 3, these results are
entirely unsatisfactory. The T-dependent factor in the ac-
tivation energy, T3=4=�T � T0�

1=4, has too weak a diver-
gence to be consistent with experimental data. Moreover,
the energy scale is wrong. The implicit picture is one in
which the string consists of a chain of N monopolar,
vacancylike fluctuations, so that e0 would be roughly equal
to �‘3, where � is the shear modulus and ‘ is the molecu-
lar length scale introduced previously. Such an energy
would be of the order of an electron volt, and would
correspond to a temperature T0 in the range of 104 K—
too large for our purposes by about 2 orders of magnitude.

An apparently more plausible picture, and one which
pertains specifically to the molecular structure of glassy
materials, emerges from the concept of ‘‘frustration-
limited domains,’’ introduced by Kivelson et al. [19,20].
Their idea is that, in a glass-forming material, the ener-
getically preferred structure of small clusters of the con-
stituent molecules is one that cannot tile an infinite space.
That is, the energetically favorable short-range order is
‘‘frustrated’’ because it cannot extend over long distances.
Thus a quenched glass may consist of many domains,
inside of which the molecules have arranged themselves
so as to have their preferred local coordinations—or some
approximation thereto; but these coordinations are violated
on the interfaces between the domains. Accordingly, we
speculate that the STZ activity is localized on a network of
two-dimensional interfaces that separate the domains. In
addition to giving us a rationale for choosing d � 2 in the
preceding analysis, this hypothesis allows the energy e0 to
be much smaller than before, because the fluctuations are
occurring in regions where the molecules already are more
loosely bound to each other than they are within the bodies
of the domains.

Choosing d � 2 and restoring missing constants, we
write Eqs. (6), (8), and (9) as follows:

�R
�N; T��2 �
�
2Tint

T

�
1=2

‘2N3=2; (10)

N
�T� �
1

2�2

TintT

�T � T0�
2 ; (11)

and
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�G
�T�
kB

�
�G1

kB
�

TintT
2��T � T0�

: (12)

This result exhibits the well-known Vogel-Fulcher linear
divergence at T � T0; therefore we know from earlier
analyses (e.g., see [20]) that it will agree with experimental
data near the glass temperature.

In the limit T ! 1, however, Eq. (12) predicts an ex-
cess, Arrhenius-like activation energy of magnitude
kBTint=2�. (The situation is worse in three dimensions,
where the activation energy grows like T1=2 at high tem-
peratures.) This physically unrealistic high-temperature
behavior is a result of the fact that our large-N, mean-field
approximations for the interaction energy and the entropy
fail when N becomes small. In this limit, the string dis-
appears and the interaction energy should vanish accord-
ingly; but our approximation says that the ratio N2=R2 in
Eq. (4) goes to a constant. Note that the failure of the
large-N approximation, by definition, occurs at the same
temperature where the system switches from super-
Arrhenius to simple Arrhenius behavior. This transition
region apparently is where the system also switches from
being solidlike to liquidlike.

The theoretical analysis in [4] implies that the
Newtonian viscosity �N�T� can be written in the form
�1 exp��G
�T�=kBT� up to slowly varying logarithmic
corrections. In that analysis as well as here, the
Arrhenius part of �G
�T�, i.e., �G1, is the STZ formation
energy; and the prefactor in the plastic strain rate, propor-
tional to the Boltzmann factor exp���G1=kBT�, is the
equilibrium density of STZ’s. The non-Arrhenius part of
�G
�T� in Eq. (12) determines the nonequilibrium rate
factor denoted in [4] (up to a prefactor) by exp����T��;
that is, ��T� � Tint=�2��T � T0��. Thus, in the spirit of
Adam and Gibbs [12], our super-Arrhenius rates are truly
nonequilibrium quantities. They describe transitions be-
tween near-equilibrium, inherent states and not, as some-
times has been assumed, an equilibrium distribution
associated with the states themselves. For example, it is
assumed in [7,21–23] that the equilibrium density of flow
defects has a Vogel-Fulcher form; and the Cohen-Grest
model [24] attributes super-Arrhenius behavior to percola-
tion of liquidlike regions in equilibrated states. In our
opinion, the nonequilibrium interpretation is the more
natural of the two possibilities.

In Fig. 1, we illustrate both the agreement near T0 and
the asymptotic disagreement at higher temperatures by
plotting �G
�T� obtained from our theory and from mea-
surements of �N�T� for the bulk metallic glass
Zr41:2Ti13:8Cu12:5Ni10Be22:5. We obtained the experimental
points by first fitting the high T (above T � 900 K) part of
the data in [25,26] with the Arrhenius function �N �
�1 exp��G1=kBT�, finding �1 � 1:78� 10�10 and
�G1=kBT � 24 300 K. We then followed the procedure
described in [27] and plotted T log��=�1� as a function of
the temperature. To compare these data with the prediction
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FIG. 1. Fits of metallic glass data from [25,26]. The dashed
line is a fit of the low-temperature data with our theory.
Parameters are �G1=kB � 24 300 K, T0 � 515, Tint, and � �
ln4.
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of Eq. (12), we used � � ln4, T0 � 515 K, and Tint �
2800 K. As expected, the theory fails above T � 700 K.
It is interesting to note, however, that the deformation
measurements reported in [26] and discussed in [3,4]
were made in the low-temperature regime, where
Eq. (12) fits the data quite well. (Our theoretical compari-
sons to data for structural glasses such as those discussed in
[20] or [27] are qualitatively the same as that shown here
for the metallic glass.)

Although the failure of Eq. (12) at high temperatures is
clearly related to a failure of our large-N approximations,
we believe that simply improving the mathematics of our
string model is not what is needed at this point. Rather, it
seems to us that somehow we must construct a realistic
model of the transition between solidlike and liquidlike
glasses using physics that so far we have not brought to
bear on this problem. The picture of a solidlike glass as a
three dimensional mosaic of frustration-limited domains
must break down at higher temperatures, where the do-
mains must become smaller and the active, liquidlike
regions between them must occupy a larger fraction of
the system. As this happens, our strings—or whatever
replaces them—must begin to look very different than
they do in our simple two-dimensional approximation. At
the most fundamental level, we believe we next must find a
way to describe how a solidlike theory of the kind dis-
cussed here crosses over to a mode-coupling theory of a
liquidlike glass-forming material.
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