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We construct a low-energy effective Lagrangian describing zero temperature supersolids. Galilean
invariance imposes strict constraints on the form of the effective Lagrangian. We identify a topological
term in the Lagrangian that couples superfluid and crystalline modes. For small superfluid fractions, this
interaction term is dominant in problems involving defects. As an illustration, we compute the differential
cross section of scatterings of low-energy transverse elastic phonons by a superfluid vortex. The result is
model independent.
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Introduction.—The possibility of superfluid behavior in
solids was considered by Andreev and Lifshitz (AL) in a
seminal paper of 1969 [1]. They proposed that point de-
fects in a 4He crystal may become quantum at low tem-
peratures and form a Bose condensate. The possibility of
superfluid solids (‘‘supersolids’’) was also conjectured in
Refs. [2,3]. For a long time, the experimental search for a
supersolid phase of helium was unsuccessful. Recently,
however, Kim and Chan claimed that superfluid behavior
may have been observed in solid 4He [4,5]. This has
stimulated renewed interest in the supersolid phase. The
superfluid fraction was found in Ref. [5] to be of order
10�2, considerably larger than what was theoretically ex-
pected ( & 10�4 [3]).

In the following, we assume that the supersolid phase
does indeed occur. We shall not discuss the microscopic
origin of such a behavior. Rather, we concentrate our
attention on the theoretical description of the low-energy
dynamics of the supersolid phase. One can expect that,
regardless of the details of the microscopic mechanism
underlying the supersolid state, its low-energy dynamics
is simple and universal, and is dictated by symmetry prin-
ciples alone. This is because the low-energy degrees of
freedom of supersolids are the Nambu–Goldstone bosons
arising from the spontaneous breaking of translational
symmetry and the U(1) symmetry generated by the con-
served particle number. In fact, Andreev and Lifshitz have
constructed the hydrodynamic equations describing a
supersolid (in the limit of small strain), based on conser-
vation laws and Galilean invariance only.

In this Letter, we restrict ourselves to zero temperature
and derive an alternative description of supersolids based
on a low-energy effective Lagrangian [6]. Such a descrip-
tion is possible since dissipative effects disappear at T � 0.
The effective Lagrangian description holds several advan-
tages over the one based on the hydrodynamic equations.
As is generally true, the Lagrangian formulation enables
straightforward application of field theoretical techniques
such as Feynman diagrams. In our particular case, the
Lagrangian also elucidates the appearance of a certain
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‘‘topological’’ interaction term, which is important in pro-
cesses involving defects.

The form of the effective Lagrangian is constrained by
various symmetries, among which an important role is
played by the Galilean invariance. For liquid superfluids,
the most general Galilean invariant effective Lagrangian
was constructed by Greiter, Wilczek, and Witten [7]. For
supersolids the possible structures appearing in the
Lagrangian are richer than in supersolid 4He, but are still
rather restrictive.

Degrees of freedom.—The fields appearing in the effec-
tive Lagrangian are the four Goldstone bosons which ap-
pear due to the spontaneous breaking of the U(1) particle
number symmetry and the translational symmetry along
three spatial directions. One of these fields is therefore the
phase of the superfluid condensate, �; under the action of
the particle number, it transforms as �! �� �.

The three remaining fields are translation breaking sca-
lars Xa, a � 1, 2, 3, which can be introduced as follows
[8]. Imagine a system of coordinates Xa, a � 1, 2, 3, which
is frozen in the body of the solid. (The choice of the system
is completely arbitrary, but for simplicity one can choose it
to coincide with the coordinates in our reference frame xi,
i � 1, 2, 3, if the solid is at equilibrium at some arbitrarily
chosen external pressure P0.) When the solid moves, this
system of coordinates also moves; so if one follows one
particular material point in the solid, its coordinates in the
X system remain constant. In general, the coordinate sys-
tem X is curved. The time history of the solid is completely
characterized by three functions Xa�t;x�, which give the
coordinates, in the comoving frame, of the material point
that is located at the position x at time t. Xa�t;x� are the
fields that enter the effective theory together with the U(1)
phase �.

One can expand the fields around the ground state

� � �0t� ’; Xa � xa � ua; (1)

where ’ and ua fluctuate around zero. Here �0 is the
chemical potential at pressure P0; ua is the usual displace-
ment vector. The superfluid velocity and the strain of the
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crystal are related to the first spatial derivatives of �
and Xa:

v s �
1

m
r’; @iX

a � �ia � @iu
a (2)

(in most of this Letter, �h � 1).
The density of lattice sites is a constant in X space. We

denote this constant by n0. In the x space, the density of
lattice sites is

n0 detj@iXaj �
n0
6
�ijk�abc@iXa@jXb@kXc: (3)

For an ordinary crystal, nonsuperfluid and without defects,
this coincides with the particle number density.

Derivative expansion.—The effective Lagrangian
should be invariant under the U(1) particle number sym-
metry, �! �� �, and the coordinate shift in the frozen
frame, Xa ! Xa � �a. Thus the Lagrangian contains only
time and coordinate derivatives of � and Xa, but not � orXa

by themselves.
In order to discuss the low-energy regime, we follow the

standard effective field theory philosophy and perform a
derivative expansion of the effective Lagrangian. Because
� and Xa do not appear without derivatives, there are two
different ways to perform the derivative expansion. One
possibility is to assume that � and Xa are slowly varying
functions of space and time. Alternatively, one can assume
that the first (temporal and spatial) derivatives of � and Xa

vary slowly. Clearly, the second alternative is more gen-
eral, since it allows for the first derivatives of � and Xa to
be large. In particular, the superfluid velocity and the strain
of the crystal do not have to be small. In our subsequent
discussion, we will therefore assume that _�, @i�, _Xa, and
@iXa may be not small, but vary slowly in space and time
over distances that are large compared to all microscopic
length scales, such as the superfluid healing length.

Keeping only leading-order terms in the derivative ex-
pansion, the Lagrangian is a function of the first derivatives
of fields,

L � L� _�; @i�; _Xa; @iXa�: (4)

This Lagrangian, in general, contains terms to all orders of
fields. In each term in the series expansion over fields � and
Xa, one keeps the lowest possible number of derivatives
equal to the number of fields.

Rotational invariance.—The effective Lagrangian
should be invariant under spatial rotations. The fields Xa,
despite being a three-component field, transform under
spatial rotations as scalar fields. This is because Xa are
the coordinates of the internal system frozen in the solid
body, which are not rotated with the axes of spatial co-
ordinates xi. Therefore the Lagrangian (4) is a function of
the following rotationally invariant combinations of argu-
ments:

L � L� _�; _Xa; �@i��2; @i�@iXa; uab�; (5)

where we introduce the notation
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uab � @iX
a@iX

b � �ab � @au
b � @bu

a � @iu
a@iu

b: (6)

It can be shown that any rotationally invariant function of
first derivatives of � and Xa can be written as a function of
the parameters staying in Eq. (5). In particular,

�ijk@iXa@jXb@kXc � �abc
���������
detu

p
; (7)

�ijk@i�@jX
a@kX

b � �abc
���������
detu

p
u�1
cd @i�@iX

d; (8)

where detu is the determinant of the 3	 3 matrix uab, and
u�1
ab is the inverse matrix of u: u�1

ab ubc � �ac.
Galilean invariance.—Further constraints on the effec-

tive Lagrangian follow from Galilean invariance. In a non-
relativistic theory where all particles have the same mass,
the momentum density is proportional to the particle num-
ber flux,

T0i � mji; (9)

where m is the mass of the 4He atom. The momentum
density and the particle number flux are found from the
Lagrangian by using Noether’s theorem,

T0i � �
@L

@ _�
@i��

@L

@ _Xa
@iX

a; ji �
@L
@�@i��

: (10)

The most general form of the Lagrangian which is consis-
tent with rotational [Eq. (5)] and Galilean invariance
[Eq. (9)] is

L � L��;wa; uab�: (11)

Here uab was defined in Eq. (6), and � and wa are

� � _��
�@i��2

2m
; wa � � _Xa �

1

m
@i�@iX

a: (12)

The variable � appears in the Lagrangian treatment of
superfluids [7]: the crystal structure is absent there and
the Lagrangian is a function of � alone. Physically, � is
the local chemical potential as measured in the frame
moving with the superfluid velocity. The meaning of wa

can be made clear by expanding it,

w � _u� �vs 
 r�u� vs: (13)

At the linearized level wa is the difference between the
velocity of motion of the crystal lattice and the superfluid
velocity.

Connection to the AL hydrodynamic theory.—The zero
temperature AL hydrodynamic equations can be derived
from the Lagrangian (11) as the equations of conservation
of particle number, energy, and momentum, written using a
particular set of variables. We introduce the total density �,
the superfluid velocity vs, and the vector vn which corre-
sponds to the normal velocity in the AL theory,

� � m
@L
@�

; vsi �
1

m
@i’; vni �

@xi

@Xa
_ua: (14)

Actually vn is the velocity of the crystal lattice; at the
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linearized level, vn � _u. At zero temperature we do not
have a normal component distinct from the crystal lattice.
Furthermore, we introduce the momentum density p and
the energy density " in the frame vs � 0,

pi �
@L
@wa @iX

a; " � �
@L
@�

� wa @L
@wa �L; (15)

and an auxiliary tensor !ia,

!ia � 2
@L

@uab
@iX

b � �vni � vsi�
@L
@wa : (16)

After some algebra, we find that the momentum density
can be written as

T0i � mji � �vsi � pi; (17)

the energy density and the energy flux as (note that T0i �

Ti0, since in our nonrelativistic theory energy does not
include rest mass; our normalization of the chemical po-
tential differs from that of AL by a factor of m)

T00 �
�v2s
2

� p 
 vs � "; (18)

Ti0 �
�
��

mv2s
2

�
ji � vni�vn 
 p� � !ia _ua; (19)

and the differential of " as

d" �
�
m
d�� �vn � vs� 
 dp� !iad�@iu

a�: (20)

Equations (17)–(20) are identical to the corresponding AL
equations at T � 0. The stress tensor can be transformed
into the form

Tik � �vsivsk � vskpi � vnipk

� �ik

�
�
�
m
� �vn � vs� 
 p� "

�
� !ik � !ia@ku

a;

(21)

which almost coincides with the corresponding AL expres-
sion. The only difference is the last term on the right-hand
side of Eq. (21), which is nonlinear in strain and was
neglected in Ref. [1]. Moreover, from the definition of
!ia, Eq. (16), one can derive the following relation:

!ik�!ki�!ia@kua�!ka@iua��vni�vsi�pk

��vnk�vsk�pi; (22)

which coincides, up to the two terms nonlinear in strain on
the left-hand side, to an equation postulated in Ref. [1] for
Tik to be a symmetric tensor.

As one can see, the effective Lagrangian provides an
extremely compact encoding of the hydrodynamic equa-
tions. Terms nonlinear in strain which were omitted in the
AL theory are fully kept in the Lagrangian. Moreover, for
quantum problems (such as scatterings of phonons) it is
easier to work with the Lagrangian than with the field
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equations. We now show that the Lagrangian contains a
special topological term that is important for scattering off
defects. For this end, we first discuss the nonsuperfluid
limit of the Lagrangian (11).

The nonsuperfluid limit.—The superfluid fraction �s=�
of solid helium-4, if nonzero, is much smaller than 1:
experiments [4,5] indicate a value of order 10�2, while
theoretical arguments [3] suggest �s=� & 10�4. We shall,
therefore, concentrate on the limit �s � �. To start, let us
discuss the limit of vanishing superfluid density.

One expects that the nonsuperfluid crystalline state is
realized as some particular limit of the supersolid state,
where � decouples from the dynamics of Xa fields. This
might seem nontrivial, since in Eq. (11) the time derivative
of Xa enters the Lagrangian in the combination wa which
involves � [Eq. (12)]. However, it is possible to achieve
such a decoupling. Consider the following Lagrangian:

L � �0

���������
detu

p �
1

2
u�1
ab w

awb �
�
m

�
� V�uab�; (23)

where �0 is some constant with the dimension of mass
density, � and w are defined in Eq. (12), and V is an
arbitrary function of the strain uab consistent with lattice
symmetry. Using the identities (7) and (8), this Lagrangian
can be transformed into the form

L �
�0

2

���������
detu

p
u�1
ab

_Xa _Xb � V�uab�

�
�0

6m
��#!��abc@��@#Xa@!Xb@�Xc: (24)

The Greek indices in the last term are spacetime indices
which run over t, x, y, z; ��#!� is the completely antisym-
metric tensor defined so that �0123 � 1. The phase � ap-
pears only in the last term of the Lagrangian, which is a full
derivative; thus � decouples from the dynamics. The last
term, which will be called the ‘‘topological term,’’ still
plays a useful role: the particle number current computed
from (24) by using Noether’s theorem arises completely
from this term,

j� �
�0

6m
��#!��abc@#Xa@!Xb@�Xc; (25)

from which we see that �0 is the total mass density in
equilibrium where Xa � xa. The current (25) is trivially
conserved. Note that the first term in Eq. (24) can be
written as mjiji=�2j0�, which is what one expects for the
kinetic energy from Galilean invariance. This fact shows
that the construction (23) is unique.

Now if one allows the superfluid fraction �s to be non-
zero and small, then there are additional terms proportional
to �s added to the Lagrangian, which makes � a dynamical
field. The topological term continues to be present in the
Lagrangian with a coefficient which differs only slightly
from �=�6m�. This term is responsible for the low-energy
scattering of elastic waves by a superfluid vortex, as we
shall see.
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FIG. 1. The scattering of transverse elastic phonons by a
superfluid vortex.
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Scattering of elastic waves by a superfluid vortex.—Let
us now use the effective Lagrangian to compute the scat-
tering cross section of elastic waves by a superfluid vortex.
In the presence of a vortex,’ is a multivalued function, and
vs � r’ is singular at the vortex core. Because of the
multivalued nature of �, the topological term is no longer
integrated by part to zero. Integrating by part, this term can
be written as

L top � �
�
6m

��#!��abc@�@#’X
a@!X

b@�X
c: (26)

Expanded over small perturbations, this expression con-
tains a term proportional to u 
 _vs, which was identified in
Ref. [9] in the context of an Abrikosov vortex in a crystal.
For definiteness, consider a vortex located at x � y � 0
and stretched along the z direction. The field of the vortex
has

@x@y’� @y@x’ � 2&��x���y�: (27)

The topological term is localized on the vortex core and has
the form

L � � &
�
m
��x���y��ux _uy � uy _ux� �O�u3�: (28)

Note that the leading term in this Lagrangian contains two
powers of u but only one derivative, so it cannot be
canceled by an unknown interaction of the vortex core
with the elastic waves. Moreover, other terms that couple
� and Xa are expected to be proportional to �s and are
negligible.

The process that will be considered has the following
kinematics (Fig. 1). A transverse phonon with momentum
�hk and linear polarization � falls perpendicularly onto a
vortex. We are interested in the probability of its scattering
into the state with momentum �hk0 and polarization �0. For
simplicity, we assume that both � and �0 lie in the plane
perpendicular to the vortex and that the solid is isotropic.
The matrix element of the process is

M �
&
m
��	 �0� 
 ẑ; (29)

from which we find the differential cross section per unit
17530
vortex length,

@2)
@�@l

�
&
2

�h2

m2v2?
ksin2�; (30)

where v? is the speed of transverse elastic waves. This
result is a model-independent prediction of the effective
Lagrangian approach, valid at small k and small superfluid
fraction. Qualitatively, the differential cross section has a
linear dependence on k and is maximum when the scatter-
ing angle � is 90�.

Conclusion.—We have found the most general effective
Lagrangian describing the low-energy dynamics of super-
solids. We show that, in the limit of small superfluid
density, the Lagrangian contains a topological term which
has a fixed coefficient. From this term we computed the
cross section of scattering of transverse phonons off a
superfluid vortex. If the supersolid state is realized in
4He, this prediction is, in principle, verifiable.

The formalism used in this Letter can be extended to
relativistic systems, e.g., for describing the crystalline
superfluid phases of quark matter [10]. Instead of
Galilean invariance, one requires relativistic invariance of
a theory of four Goldstone bosons � and Xa. Such a theory,
when coupled to gravity, gives rise to a gravitational analog
of the Anderson–Higgs mechanism. Indeed, theories of
this type have been proposed recently as an infrared modi-
fication of gravity that gives the graviton Lorentz-breaking
mass terms [11,12]. From this point of view, the modifica-
tion of gravity considered in Refs. [11,12] can be inter-
preted as an effect coming from a supersolid dark matter
sector.
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