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Mechanism of Stabilization of Ballooning Modes by Toroidal Rotation Shear in Tokamaks
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A ballooning perturbation in a toroidally rotating tokamak is expanded by square-integrable eigen-
functions of an eigenvalue problem associated with ballooning modes in a static plasma. Especially a
weight function is chosen such that the eigenvalue problem has only the discrete spectrum. The
eigenvalues evolve in time owing to toroidal rotation shear, resulting in a countably infinite number of
crossings among them. The crossings cause energy transfer from an unstable mode to the infinite number
of stable modes; such transfer works as the stabilization mechanism of the ballooning mode.
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The theory of ideal magnetohydrodynamic (MHD) bal-
looning modes in a static plasma has been well established
by applying the Wentzel-Kramars-Brillouin (WKB)
method [1,2]. The WKB method was also applied for the
ideal MHD ballooning modes in a toroidally rotating to-
kamak, and coupled wave equations along a magnetic field
line were derived [3]. The behavior of the solution has not
been fully understood, although several numerical solu-
tions have been obtained [4–8]. In Ref. [7], it was found
that toroidal rotation shear damps the perturbation energy
of ballooning modes; the damping phase alternates with an
exponentially growing phase. When the damping compen-
sates the growth in the sense of time average, the plasma is
marginally stable. However, it has not been clarified how
the toroidal rotation shear damps the perturbation energy.

In the present Letter, we explore how toroidal rotation
shear stabilizes ballooning modes via a spectral analysis of
a linear differential operator for ballooning modes in a
static plasma. If we crudely try to expand the ballooning
perturbation in a rotating plasma by a set of eigenfunctions
for ballooning modes in a static plasma, such an attempt
will fail because of difficulty in treating the continuous
spectrum; the generalized eigenfunctions belonging to the
continuous spectrum are singular and non-square-
integrable. Thus we cannot treat them numerically, and
also analytical studies are limited by geometry, profiles,
and so on. An earlier work tried to resolve the difficulty by
replacing it with the closely spaced discrete spectrum [9],
which is accomplished by replacing the covering space
with a large but finite interval. However, when the balloon-
ing mode in a rotating tokamak propagates in a wide
region, we have to take the interval large enough. Then
the spacing of the eigenvalues become closer and the
eigenfunctions become singular, which indicates the diffi-
culty in the analysis. We have formulated an associated
eigenvalue problem yielding only the discrete spectrum in
the original covering space [10]; it is composed of the
linear differential operator in a static plasma and a weight
function which is chosen to generate only the discrete
spectrum. Then, we obtain a complete set of square-
integrable eigenfunctions which is defined in the same
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domain as the ballooning mode in a toroidally rotating
tokamak, which enables us to expand the mode.

Actually, the toroidal rotation shear changes the wave
vector in time [3], and the coefficients of the ballooning
equation depend on time only through the wave vector. As
we see in the following, the ballooning equation is com-
posed of time derivatives of the plasma displacement and a
space-derivative operator (the ballooning operator). The
ballooning operator includes time just as a parameter;
thus we can define an eigenvalue problem associated
with the ballooning operator at each instance. Then we
can expand the ballooning perturbation by the eigenfunc-
tions which includes time as a parameter, or which varies in
time. The eigenvalues also vary in time. As we find below,
countably infinite numbers of crossings of the eigenvalues
occur around the time when the smallest eigenvalue
changes its sign. The crossings cause energy transfer
from an unstable mode to the infinite number of stable
modes, and such transfer stabilizes the mode.

The ballooning equations in toroidally rotating toka-
maks were derived as coupled wave equations for two
components of a displacement vector [3]. Features of the
equations are as follows: (i) convection terms exist and
(ii) the coefficients of the equations have the dynamical
lattice symmetry [3]. We proposed a model equation which
has the above two features in Ref. [11],

��
�
@2�?
@t2

�U
@�?
@t

�
� L�?; (1)

where

L�? �
@
@#

�
f
@�?
@#

�
� g�?; (2)

�� �

0�jkj2

���
g

p

B2 ; (3)

U �
2k � r�

jkj2
; (4)
1-1  2005 The American Physical Society



0
0.1

PRL 94, 175001 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
6 MAY 2005
f �
jkj2

B2 ���
g

p ; (5)

g � �
2
0

B4 	B
 k � ��	B
 k � rp�: (6)

It should be noted that Eq. (1) reduces to the conventional
ballooning equation in a static plasma when the toroidal
rotation shear �0 is set to zero. Here, �? is a perpendicular
component of the displacement vector, 
0, �, p and � are
vacuum permeability, mass density, pressure, and toroidal
rotation frequency, respectively, B is a magnetic field, � is
a magnetic curvature, k � r� � qr�� 	# � �k 
_�t�rq is a wave vector, � and � are a poloidal angle and

a toroidal angle, respectively, # is an extended poloidal
angle in the covering space,

���
g

p
is the Jacobian, �k is a

ballooning angle, q is a safety factor, and _� is defined by
d�=dq. We have confirmed that damping phases appear in
the time evolution of

R
1
�1 d#j�?j

2 by solving Eq. (1)
numerically [11]. The damping phase alternates with an
exponentially growing phase, which is essential for the
stabilization of the ballooning modes [7]. As an example,
time evolution of

R
1
�1 d#j�?j

2 is shown in Fig. 1 for
_��A � 0 (no rotation shear), 0.118 (unstable), and 0.473

(stable), where �A is the Alfvén time defined by (connec-
tion length)/(Alfvén velocity). Equation (1) is solved on a
magnetic surface of a large aspect ratio and circular cross
section tokamak equilibrium, and the magnetic shear and
the pressure gradient parameters [12] on that surface are
both chosen to be 2. The rotation shear is given arbitrarily
on that surface without affecting its force balance (or
equilibrium magnetic geometry) since we have chosen
the rotation itself to be zero.

Here we expand �? in Eq. (1) by a set of orthonormal
functions. If we take the set as eigenfunctions of the
ballooning equation in a static plasma,

L � � � ��!2�; (7)
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FIG. 1. Time evolution of
R
1
�1 d#j�?j

2 is shown for _��A � 0
(no rotation shear), 0.118 (unstable), and 0.473 (stable).
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we face intractable difficulty because of the continuous
spectrum; the generalized eigenfunction corresponding to
the continuous spectrum is singular and non-square-
integrable which cannot be treated numerically. However,
the spectrum of the linear operator L is determined by the
operator itself together with a boundary condition and a
weight function. If we appropriately choose the weight
function, the spectrum becomes discrete [13]. In the
present Letter, we devise the set of orthonormal functions
as eigenfunctions of an associated eigenvalue problem

L � � �w��; w � h ��: (8)

We have found that asymptotic solutions of � are propor-
tional to #�1=2�
 for any � when h / j#j�4 for large j#j
and h � 1 elsewhere [10]. Here 
 �

����������������������
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p
and DM

is the Mercier index: DM < 1=4 is assumed which is
usually satisfied in tokamaks. Then 
 is real and positive.
When the solution of Eq. (8) behaves as the large solution,
lim#!1�� #�1=2
, L is not self-ajoint even if
lim#!1� � 0 for 
< 1=2. Only the small solution, pro-
portional to #�1=2�
, is acceptable. The normR
1
�1 d#wj�j

2 is bounded for the small solution.
Therefore, Eq. (8) has only the discrete spectrum. Since
L is self-ajoint, the eigenfunctions are orthogonal with
each other,
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where �jk is the Kronecker’s delta function. We can hence
expand �? as

�?	t; #� �
X
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aj	t��j	t; #�; (10)

where aj’s are amplitudes and �j’s are eigenfunctions of
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FIG. 2. The smallest eigenvalues of Eqs. (7) and (8) as func-
tions of ~�k. For j~�k=�j< 0:297, both Eqs. (7) and (8) yield the
discrete eigenvalues. The eigenvalues nearly coincide. For
j~�k=�j> 0:297, only Eq. (8) yields the discrete eigenvalue.
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FIG. 3. Eigenfunctions corresponding to the smallest eigenvalues of Eqs. (7) and (8) as functions of #. For ~�k=� � 0 (left), the
eigenfunctions are well localized in # space and both curves are indistinguishable. For ~�k=� � 0:5 (right), only Eq. (8) yields the
square-integrable eigenfunction.
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Eq. (8) with the ballooning angle ~�k � �k � _�t taken to be
a constant; let us note that the eigenvalues and the eigen-
functions are defined at each instance. It is noted that the
discrete eigenvalues of Eq. (8) do not mean the spectral
resolution of the Alfvén wave. Also, they are not a subset
of the spectrum of Eq. (7). However, a small number of the
eigenfunctions can approximate dominant behavior of the
ballooning mode, and also the eigenfunctions form a com-
plete set which expands any square-integrable function
[10].

Figure 2 shows the smallest eigenvalues of both eigen-
value problems (7) and (8). When we solve Eq. (8) nu-
merically, h � 1 and h / j#j�4 are smoothly connected at
# � �40� in this study. Although it is possible to take this
connection point much farther from the origin, we have to
take a much wider region to achieve good convergence of
the eigenvalues and eigenfunctions. Since w is positive
everywhere, the marginally stable state of Eq. (8) is the
same as that of Eq. (7). Equation (8) yields the discrete
eigenvalue for every ~�k=�, although Eq. (7) does only
when the eigenvalue is negative. Figure 3 shows the eigen-
functions corresponding to the smallest eigenvalues for
~�k=� � 0 and 0.5. For ~�k=� � 0, both Eqs. (7) and (8)
yield the square-integrable eigenfunctions; they are local-
ized in # space and almost coincide since h � 1 except for
j#j � 1. The corresponding eigenvalues also nearly coin-
FIG. 4. Eigenvalues �j’s as functions of t or ~�k. Around the time wh
numbers of crossings of eigenvalues occur. The shaded region in th
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cide (see Fig. 2). For ~�k=� � 0:5, on the other hand, only
Eq. (8) yields the discrete eigenvalue and the square-
integrable eigenfunction.

Substituting Eq. (10) into Eq. (1) and using the orthogo-
nality condition (9), we obtain coupled evolution equations
for aj’s as

d2aj
dt2
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where the coupling parameters are defined as
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The coefficients C1jk and C2jk come both from the convec-
tion term U and from the time dependence of the wave
vector. When _� � 0,C1jk andC2jk vanish. In principle, we
can reconstruct the solution of Eq. (1) from the solution of
Eq. (11). However, it is impossible to solve an infinite
number of coupled equations. When we solve the truncated
en the smallest eigenvalue �1 changes its sign, countably infinite
e left is enlarged in the right.
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FIG. 5. Time evolution of jajj2’s and
R
1
�1 d#j�?j

2 obtained from numerical solution of Eq. (1). When �’s cross (see Fig. 4), jajj2 is
smoothly converted to jaj1j

2. The shaded region in the left is enlarged in the right.
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version of Eq. (11), we obtain an approximated solution.
Such solutions will be presented in another Letter. Instead,
we will expand the solution of Eq. (1) by the eigenfunc-
tions of Eq. (8) and obtain aj’s in the following.

The expansion of �? by the square-integrable eigen-
functions enables us to clarify the stabilization mechanism.
In the following, _��A is chosen to be 0.118, since we can
observe the stabilization mechanism most clearly before
complete stabilization. When _� is finite, ~�k changes with t
in Eq. (8). Accordingly, the eigenvalues of Eq. (8) are
functions of ~�k or t as shown in Fig. 4. We find that the
toroidal rotation shear yields crossings of eigenvalues;
from the numerical results, we see that a countably infinite
number of crossings seem to occur at the same time. The
periodic behavior of the eigenvalues comes from the dy-
namical lattice symmetry of the wave vector, which origi-
nates in the periodicity of a torus. The smallest eigenvalue,
�1, becomes negative around ~�k � 2�m (m � 0;�1; � � � ).
Figure 5 shows the time evolution of jajj

2’s andR
1
�1 d#j�?j

2 obtained from the numerical solution of
Eq. (1). As shown in Fig. 5 (left),

R
1
�1 d#j�?j

2 grows
during �1 is negative. The growth rate of

R
1
�1 d#j�?j

2 is
almost the same with that of ja1j2. Thus the set of eigen-
functions of Eq. (8) nicely captures the behavior of the
solution of Eq. (1). Around the time when �1 changes its
sign, the eigenvalues cross as indicated by (1), (2), and (3).
At (1), �1 and �2 cross. At that time, ja1j2 is smoothly
converted to ja2j

2 as indicated by (1) in Fig. 5. The mode
couples through the convection term in Eq. (1), and the
energy is transferred when the eigenvalues cross. As time
proceeds, �2 and �3 cross [(2) in Fig. 4]. At that time, ja2j2

is converted to ja3j2 [(2) in Fig. 5]. Thereby, ja1j2 is
converted to ja3j2 during 100< t=�A < 125. As time pro-
ceeds further, �3 and �4 cross at t=�A ’ 155 and ja3j2 is
converted to ja4j2 at that time [as same as (3) in Figs. 4 and
5]. Therefore, even if the unstable mode grows during �1 is
negative, its energy is transferred to the infinite number of
stable modes successively. For large _�, the coupling
among aj’s becomes strong, and the energy transfer com-
pletely stabilizes the ballooning mode. Other interesting
behavior will be studied elsewhere.
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In conclusion, we have succeeded in clarifying how the
toroidal rotation shear stabilizes the ballooning mode. The
toroidal rotation shear yields the crossings among the
eigenvalues; the crossings cause energy transfer from the
unstable mode to the countably infinite number of stable
modes because of the mode couplings due to the convec-
tion. This mechanism can be interpreted as phase mixing
which damps the unstable mode connected to the stable
continuum through the toroidal rotation shear.
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