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Drag Reduction by Microbubbles in Turbulent Flows: The Limit of Minute Bubbles
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Drag reduction by microbubbles is a promising engineering method for improving ship performance. A
fundamental theory of the phenomenon is lacking, however, making actual design quite haphazard. We
offer here a theory of drag reduction by microbubbles in the limit of very small bubbles, when the effect of
the bubbles is mainly to normalize the density and the viscosity of the carrier fluid. The theory culminates
with a prediction of the degree of drag reduction given the concentration profile of the bubbles.
Comparisons with experiments are discussed and the road ahead is sketched.
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The idea of reducing drag friction by placing a thin layer
of air between a ship and its water boundary was patented
already in the 19th century [1]. Drag reduction by the
injection of microbubbles into the turbulent boundary layer
has been the subject of intensive research since the first
experimental observation of this phenomenon in [2]; see
the comprehensive review [3]. The reduction of skin-
friction drag by microbubbles has important technological
and engineering advantages, especially for marine trans-
portation by huge and relatively slow ships like tankers, but
also for many other applications, such as hydrofoils, in-
pipe transportation, etc. The voluminous literature on the
engineering aspects of the problem cannot be referenced in
full. It suffices to mention impressive results such as the
microbubble drag reduction by about 80% on a flat plane
[4] and up to 32% on a 50 m long flat plane ship [5]. Some
steps in understanding the phenomenon have been made.
The authors of Ref. [6] found that the drag reduction
correlates with the maximum void fraction in the boundary
layer. It was understood that the “local distribution and
shape [of the microbubble void fraction C(r)] in the bound-
ary layer have paramount influence in the drag reduction™
[7]. Many researchers (see, e.g., [8]) found that the effect of
microbubbles decreases downstream and that the bubble
size is another important factor influencing frictional
resistance.

Legner [9] stated that the “decrease of the medium
density as the gas concentration increases provides the
primary drag reduction mechanism.” Unfortunately, the
analysis of Ref. [9] does not contain any spatial depen-
dencies, taking the distribution of bubble void fraction to
be homogeneous. In addition, Legner [9] concluded that
the increase of the dynamic fluid viscosity, caused by the
bubbles, leads to an increase of frictional drag. In contra-
diction, other studies (see, e.g., Ref. [10]) lead to the
opposite conclusion that the increase of the viscosity,
caused by microbubbles, decreases the friction drag. To
date this confusion has not been resolved theoretically.

The aim of this Letter is to offer a theory of drag
reduction by microbubbles in the limit that their diameter
d is small enough to neglect the gravity force (= d°)
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compared to the Stokes force («d), and is small compared
to the Kolmogorov viscous scale 5 (d/7n < 1). The void
fraction C(r) is fixed and not too large [C(r) = 0.05)]. In
addition, we assume that the scale of variation €, =
C(r)/|VC(r)| < z where z is the distance from the wall.
In this limit we can demonstrate explicitly a mechanism for
drag reduction which stems from the decrease of the fluid
density and the increase in the fluid viscosity. This is not to
say that there are no additional possible mechanisms of
drag reduction by larger bubbles due to their influence on
the structure of turbulence, including near wall coherent
structures [11-13]. The theoretical description of such
effects is, however, very difficult; they stem entirely from
finite bubble-size effects, and they should be taken only as
a further step in the development of the theory.

As a starting point for the theoretical development, we
take the two-fluid description of turbulent flows with bub-
bles which is presented in Ref. [14]. In this description the
bubbles are of diameter d which is very small. We do not
consider individual bubbles, but rather describe them by a
field of void fraction C(r, ) < 1 and velocity w(r, t). The
carrier fluid has density pq, viscosity wg, and velocity
U(r, t). We take the air density of the bubbles to be zero
and the acceleration due to gravity, g, to act in the Z
direction which is normal to the wall. Disregarding terms
of the order of d? one writes the equation of motion

DU 18Cpu,
1 - — = -U)—-(1-0V
(1= Opo == w = V) = (1 = OFp
+ (1 - C)Pog + 2(1 - C)V : (/-‘LEm)
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The effective viscosity which appears in these equations is
determined by the bubble concentration [15],

= (1+5C/2)p. 3)

These equation should be supplemented with
a1 —-C)/at+V-[(1-C)U]=0, “)
aC/dt+ V- (Cw) = 0. 5)

We now simplify the equations further in the limit d — 0
by evaluating the term proportional to d~2 in Eq. (1) using
the same term in Eq. (2). We find

(1= C)poDU/Dt = (1 = C)[—Vp + pog + 2V - (LE,)]

In the same limit U,, = U and E,, = E; = E.
After some further simplifications in which we retain
only terms linear in C(r), one gets (see, for example, [12])

pDU/Dt = —Vp + pg + 2V - (LE), @)

V-U=0, DC/Dt = 0, ®)

where the effective density of the suspension is
p = (1—=0Cpy. €))

The important conclusion is that dilute (C < 1) solutions
of minute microbubbles (d — 0) can be described by a
one-fluid model with modified density p and viscosity .
This also implies that no clustering of bubbles is taken into
account. Such clustering is expected to occur only when
the diameter of the bubbles exceeds a critical length of the
order of Kolmogorov scale [16]. Note that, consistent with
this, the velocity field remains incompressible; this result is
valid for minute microbubbles d — 0 for arbitrary concen-
trations C. Having these results at hand we are poised to
offer a theory of drag reduction that is quite similar to the
theory by the same authors for drag reduction by flexible
polymers [17].

Consider a flow in channel geometry (with half channel
width L); the mean flow is in the x direction, the wall
normal direction is z, and the spanwise direction is y. We
take the bubble concentration C(r) to be given and time
independent. The fluid velocity U(r) is a sum of its average
(over time) and a fluctuating part:

U(r,t) =V(z) + ur, 1), V(z) =U(r, ). (10)

For channel flows all the averages and, in particular,
V(z) = V(z) are functions of z only. The objects that enter
the theory are the mean shear S(z), the Reynolds stress
W(z), and the kinetic energy K(z); these are defined,
respectively, as

d‘;éZ), W(z) = —p(2)u,u,), K(Z)=T<|”|2>'

Under the assumption €. << y we derive a pointwise bal-

p(2)

S(z)=

ance equation for the flux of mechanical momentum, relat-
ing these objects [17]. Near the wall (for z < L) it reads

w(z)S(z) + W(z) = p'L. (1)

On the right-hand side of this equation we see the produc-
tion of momentum due to the pressure gradient; on the left-
hand side (LHS) we have the Reynolds stress and the
viscous contribution to the momentum flux, with the latter
usually being negligible (in Newtonian turbulence u =
Mo) everywhere except in the viscous boundary layer.

A second relation between S(z), W(z), and K(z) is
obtained from the energy balance. The energy is created
by the large scale motions at a rate of W(z)S(z). It is
cascaded down the scales by a flux of energy, and is fi-
nally dissipated at a rate €, where € = u(z){|Vul?). We
cannot calculate € exactly, but we can estimate it rather
well at a point z away from the wall. When viscous effects
are dominant, this term is estimated as [w(z)/p(z)] X
(a/z)*K(z) (the velocity is then rather smooth; the gradient
exists and can be estimated by the typical velocity at z over
the distance from the wall). Here a is a constant of the
order of unity. When the Reynolds number is large, the
viscous dissipation is the same as the turbulent energy flux
down the scales, which can be estimated as K(z)/7(z)
where 7(z) is the typical eddy turnover time at z. The latter
is estimated as +/p(z)z/b+/K(z) where b is another constant
of the order of unity. We can thus write the energy balance
equation at point z as

s (a VKR )
[P(Z)(z) - p(z)z}K(Z) W(2)S(kz), (12

where the bigger of the two terms on the LHS should
prevail. We note that contrary to Eq. (11) which is exact,
Eq. (12) is not exact. It was shown, however, to give
excellent order of magnitude estimates as far as drag
reduction is concerned [17,18]. Finally, we quote the ex-
perimental fact [19,20] that outside the viscous boundary
layer

W(z) = 2K(z), (13)

with a coefficient ¢ = 1 [17].
We can change variables now in favor of wall units
according to

St =[u(z)/p'L]S, 25 =z/p(@p'L/ n(2),

(14)
Wt =W/p'L, K*=K/p'L.
In these units our balance equations read
St+wt =1, Kt = 2w, (15)

[(Z%)z + Z%\/K—Jr}lﬁ — WSt (16)

This set of equations is readily solved, giving
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St(zh) =1, forz7 =z, (17)

262 (zv ") — 1+ A2 [(2T)? — (zv ")’ ] + 1
2K2(Z+)2 ’

forzt =z5H  (18)

S+(Z+) —

In these equations we defined k = ¢3/b, z} = a/c. The
mean velocity at point z can be obtained by integrating,

2 z p'L
V() = f S()dz' = f ST )L (19)
0 0 u(2)
A measure of drag reduction is the relative increase in the
mean center-line velocity in the bubbly flow with respect to
the neat Newtonian fluid:

AV = Vi(L) = Vn(L). (20)

Clearly, AV > 0 corresponds to the drag reduction, while
AV < 0 corresponds to the drag enhancement. We obtain
an expression for AV from Eq. (19) by expanding to linear
order in C(z) (where our equations are valid anyway):

AVT =A L= [ + + . 21
v+ = AVA[po/p'L ﬁ x@HCEHdz. @)

Here the response function y consist of two parts, one due
to the density variation y, and the other due to the vis-
cosity variation y ,:

Xz = x, (@) + x, ("), (22)
x,(z") = —z"a8"(z") /2027, (23)
X (zh) = —50[8"(z")z"]/20z". (24)

In writing Eq. (21) we have used the fact that in experi-
ments the bubbles tend to be localized in a finite region
near the wall (see, for example, [10]), i.e., C(z) — O suffi-
ciently fast as z — o0, and we extended the integration
range to infinity.

Equations (21)—(24) are the main theoretical predictions
of this Letter. To complement the theory we now present
estimates of the numerical value of the expected drag
reduction, and compare it with a relevant experiment.
The simplest model takes the parameters in agreement
with the classical von Karman boundary layer theory,
ie., k= 0436 and z; = 5.6. Evaluating the response
function y with these parameters results in the findings
presented in Fig. 1. We see that in the viscous layer, where
Eq. (17) is relevant, y, =~ 0 while y, is negative. This
means that having a bubble concentration in this region
does not buy us drag reduction due to the density variation,
but it leads to drag enhancement due to the viscosity
increase. This is far from being surprising, since in this
region the momentum flux is dominated by the viscous
term wS. For a fixed momentum flux any increase in
viscosity must decrease S and correspondingly lead to
drag enhancement. The most efficient drag reduction can
be obtained by placing the bubble concentration out of the

viscous layer, but not too far from the wall, say, at 6 =
z" = 30. In this region both the decrease in density and the
increase in viscosity lead to drag reduction. The momen-
tum in this region is transported mainly by the Reynolds
stress —p{u,u.). The effect of density reduction is abso-
lutely clear: it leads to the reduction in momentum flux. For
a given momentum generation p’L this has to result in the
increase of the mean momentum of the flow. More inter-
esting and counterintuitive is the effect of increasing vis-
cosity. In order to understand it, we remind the reader that
for intermediate values of z* there is no well-developed
turbulent cascade, and outer and inner scales of turbulence
are of the same order of magnitude. Therefore the increase
of viscosity reduces the turbulent energy, in contrast to
fully developed turbulence where changes of viscosity
simply modify the Kolmogorov scale without any effect
on the turbulent energy, that is dominated by the outer
scale. The decrease in turbulent energy here reduces the
Reynolds stress; see Eq. (13). It is interesting to note that
this effect of increasing viscosity is essentially the same as
the mechanism for drag reduction in the case of elastic
polymers [17,18]. For polymers, however, the increase in
viscosity can be very significant and the linear approxima-
tion that is used here is not applicable.

In comparing with experiments we need to consider low
bubble concentrations. An interesting experiment was re-
ported in [10], where both C(z) and V* (z*) are shown. We
note that this experiment deals with a developing boundary
layer rather than a steady channel geometry, but near the
wall the Reynolds number can be considered rather time
independent. Digitizing the published profiles C(z) and
integrating them numerically against our function x(z),
we obtain results for AV*, which appear in reasonable
agreement with the data of [10], as long as C(z) is small,
C = 0.1. For the three lowest values of bubble concentra-
tion, roughly estimated in section 2 of the experimen-
tal apparatus as 0.02, 0.05, and 0.08, we find AV values
of 0.4, 1.0, and 1.6 as compared with experimental values

0 0 20 30 40

FIG. 1. Plots of the model response function y and its con-
tributions y, and y, due to the density and viscosity varia-
tions. These functions are computed from our model shear
function S*(z*) as shown in Egs. (17) and (18) plugged into
Egs. (22) and (23).
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FIG. 2. Plots of the response function y and its contributions
Xp and x, due to the density and viscosity variations computed
from the simulation data of [21].

of 0, 1.1, and 2.5 (with an accuracy of about 0.5). For
higher values of C(z) the results of the experiment become
sensitive to nonlinear effects; in particular, AV* is no
longer linear in C .

It appears extremely worthwhile to test the theory pre-
sented here by numerical simulations that would be de-
signed to do so. We should stress that a careful measure-
ment of S*(z*) in either experiments or simulations, in
addition to a determination of AV, can provide a very good
test of our theory. Equation (21) is more general than our
model (18), and it can be tested directly if ST(z") and its
z" derivative are known. Since the response function y is a
property of the reference (Newtonian) flow, we can take it
from Newtonian data. As an example of such a calculation
we have considered the results of numerical simulations for
a Newtonian channel flow available in [21], where the
profile $*(z") is provided. We have used it to compute
the response function y and its two contributions according
to Egs. (22) and (23). The results are presented in Fig. 2.
We see that the qualitative predictions of our model for y
are excellently reproduced by the numerical data, even
though the smoother crossover between the viscous and
logarithmic layers translates to smoother functions y, and
Xy~ A similar comparison for channel flow with bubbles
will shed important additional light on our approach.

We reiterate that additional nonlinear contributions to
drag reduction are expected to come in when the concen-
tration increases, and especially when the bubble diameter
d increases. In particular, for larger bubbles the gravity
force becomes important. One should definitely examine
theoretically the nonlinear and finite size effects and in-
corporate them into a more complete theory of drag reduc-
tion by microbubbles. It is the proposition of this Letter,
however, that the limit C(z) << 1 and d — 0 is a relevant
limit where the theory simplifies considerably and where
experiments, and especially numerical simulations, can
give valuable support for the present theory. It is important
to exhaust the linear effects of drag reduction by minute
microbubbles before landing on the much more involved
nonlinear theory.
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