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Transitions to Electrochemical Turbulence
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We report experimental evidence of transitions from limit cycle oscillations through a phase turbulent
regime to space-time defect turbulence in a spatially (quasi-)one-dimensional electrochemical system
with nonlocal coupling. The transitions are characterized in terms of the defect density, the Karhunen-
Loève decomposition dimension, and a measure of the degree of spatial correlation in the data.
Furthermore, these quantities give the first experimental confirmation that the spatial coupling range in
electrochemical systems indeed depends on the distance between the working and the counterelectrode.
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Systems that are driven far from thermodynamic equi-
librium may exhibit spatiotemporally chaotic states, char-
acterized by a finite correlation length in both space and
time [1]. For the last decade, it has been a challenge to
reveal mechanisms that govern transitions to spatiotempo-
ral chaos and to establish methods for characterizing such
high-dimensional disordered states. Much of this work is
theoretical, calling now for systematic experimental
studies.

Previous theoretical investigations mostly focused on
the complex Ginzburg-Landau equation (CGLE), a generic
model for diffusively coupled oscillators close to a super-
critical Hopf bifurcation. In the framework of the CGLE, a
well known source of spatiotemporal chaos (widely re-
ferred to as chemical turbulence in this context) is the
Benjamin-Feir (BF) instability, see, e.g., [1–3]. When a
one-dimensional system obeying the CGLE is driven be-
yond the BF instability, it first develops phase turbulence,
where the local oscillation phase shows weak irregular
fluctuations. Farther away from the instability, defect tur-
bulence occurs, which is characterized by the presence of
phase dislocations [4].

Experimental studies of spatiotemporal chaos are still
rare. They mostly focus on systems and situations for
which the CGLE proved to be a good model, such as
some hydrodynamic systems (see, e.g., [5]), or chemical
systems [6–12]. All of these experimental examples in-
volve spatially two-dimensional systems and identify ei-
ther routes to spatiotemporal chaos different from the
above-mentioned scenario or aim at suppressing turbu-
lence, rather than at the study of its emergence. In this
Letter, we report experimental observations of transitions
from relaxation oscillations to defect turbulence in a
(quasi-)one-dimensional electrochemical system. Spatial
coupling in electrochemical systems is nonlocal and,
thus, bridges the gap between local nearest neighbor cou-
pling and global ‘‘all-to-all’’ coupling. The observed spa-
tiotemporal chaos is migration induced, i.e., induced by
nonlocal coupling. To stress the similarity of these chaotic
states with chemical turbulence observed in the BF-
05=94(17)=174104(4)$23.00 17410
unstable region of reaction-diffusion systems, they will
be referred to as electrochemical turbulence. Finally, by
characterizing different turbulent states we confirm a theo-
retical prediction saying that the range of the spatial cou-
pling in an electrochemical system depends on the distance
between the working (WE) and the counter (CE) electrode.

Oscillatory electrochemical systems can be considered
as active distributed media and are mathematically de-
scribed by a set of coupled partial differential equations.
They differ from reaction-diffusion systems only in the
spatial coupling term of the electric potential drop across
the electrode=electrolyte interface, �DL, the main variable
in electrochemical systems [13]. In many of these systems,
and also the one considered here, �DL is an autocatalytic
variable and its evolution equation in dimensionless form
reads
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where ci are concentrations of species reacting at the
electrode, their diffusion parallel to the electrode being in
general negligible.

The last term of Eq. (1) describes the nonlocal migration
coupling, which is mediated through the electric potential
in the electrolyte, ��x; z�, obtained by solving Laplace’s
equation [14,15] (x and z being the coordinates parallel and
perpendicular to the electrode, respectively, and z � WE a
position at the WE; 
 is the dimensionless conductivity).
Moreover, Eq. (1) predicts a peculiar property of spatial
coupling in electrochemical systems, namely, that its
range, i.e., the distance over which a perturbation at a
given point is felt instantaneously and with a finite
strength, increases with the distance between the WE and
the CE [14]. This is reflected in the dependence of Eq. (1)
on the parameter �. For a ring-shaped working electrode,
as used in the present study, � is the ratio between the
circumference of the electrode and the distance between
the WE and the CE. The coupling can be expressed in
terms of the integral over a coupling function, H�jx� x0j�,
as first discussed in [16],
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In Fig. 1(a), H�jx� x0j� is shown for two different cou-
pling ranges.

The system investigated is the electrooxidation of hy-
drogen on Pt in the presence of Cu2	 and Cl� ions [17].
The WE consisted of a polycrystalline Pt ring. The voltage
between the WE (which was grounded) and a potential
microprobe (PP) which was located immediately beneath
the ring [see Fig. 1(b)] was measured, the obtained signal
being a very good approximation of �DL�x�. Rotating the
ring over the microprobe, the temporal evolution of spatial
profiles of �DL�x; t� along the angular direction x are
obtained. The rotation of the ring ensured also a defined
mass transport of H2, as well as Cu2	 and Cl� ions from
the bulk electrolyte to the reaction plane at the WE. Note,
however, that the rotation did not interfere with the pattern
formation, which occurs at the solid-liquid interface, i.e.,
within a boundary layer that is firmly attached to and
rotates with the WE, as also confirmed in independent
experiments [18]. The RE was placed in a separate com-
partment whose junction to the main cell was below the
CE. Experiments were conducted for two different dis-
tances between the WE and the CE, namely, 40 (case 1)
and 5 mm (case 2) to realize different coupling ranges
(Fig. 1).

For the chosen composition of the electrolyte and a
constant applied voltage U between the WE and the RE
the system exhibited nonstationary states over a large
voltage range for both large (case 1) and small (case 2)
separations of WE and CE. In both cases, the dynamics was
more regular at low values of U, i.e., low driving force for
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FIG. 1. (a) Coupling function, H�jx� x0j�, plotted versus the
distance (x� x0) from a reference point x for a 1-dimensional
ring electrode and two different coupling ranges; solid curve:
nonlocal coupling, dashed curve: more localized coupling. (b)
Experimental setup; WE: working electrode (mean circumfer-
ence: 85 mm; width: 1 mm), CE: counterelectrode, RE: refer-
ence electrode (Hg=Hg2SO4, sat.), located below the plane of the
CE in both cases, PP: potential probe. The WE was rotated at
20 Hz and the spatiotemporal evolution of the interfacial poten-
tial was obtained by the PP with a resolution of 50 points per
rotation. See Ref. [23] for further experimental details.
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the oxidation of hydrogen, and became increasingly com-
plex in space and time for increasing U. Parts of experi-
mental current time series and spatiotemporal plots of the
interfacial potential are depicted in Fig. 2 for the two cases
and three different values of U. In case 1, the current time
series is periodic at low values of U, the interfacial poten-
tial being almost completely synchronized along the entire
electrode (a). With increasing U, the initially small and
regular spatial modulations become more pronounced and
irregular (b) until eventually oscillations break up into
domains with decreasing average length scale. A typical
state in the strongly irregular regime is depicted in (c).

Also for a closer distance between the WE and the CE
(case 2), the dynamics becomes more irregular with in-
creasing U. However, in this case, even at the lowest values
of U, oscillations are not strictly periodic and spatial
modulations are already pronounced, Fig. 2(d). The tran-
sition to developed turbulence occurs in a smaller interval
of U, and the minimal length scale is smaller than in case 1.

To further substantiate the nature of the transitions, we
transformed the potential values �DL�x; t� into amplitude
and phase variables following a variant of the analytic
signal approach [19–21]. First, the analytic signal

��x; t� � �DL�x; t� 	 i ~�DL�x; t� (3)

is computed, where ~�DL�x; t� is the Hilbert transform of
�DL�x; t�
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FIG. 2 (color online). Global current time series and spatio-
temporal evolution of the interfacial potential, �DL, as a function
of position on the ring and time for different values of the applied
voltage U and electrode placement corresponding to case 1
[plates (a), (b), and (c)] and case 2 [(d), (e), and (f)]. U: (a)
1.06 V, (b) 1.19 V, (c) 2.14 V, (d) 0.82 V, (e) 0.89 V, and (f)
1.54 V. Electrolyte: H2-saturated, aqueous 0.5 mM H2SO4 solu-
tion containing 0.1 mM HCl and 0.01 mM CuSO4. A continuous
flow of H2 was maintained throughout the experiments.
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The phase ’ is then directly calculated from �, ’ � arg�,
whereas the amplitude variable A � �=�ref is obtained
from the modulus of � through normalization by a refer-
ence amplitude �ref�’�. The latter was extracted from the
analytical signal by averaging � � j�j separately inside
each of 100 equidistant intervals of ’.

An example of phase and amplitude representations of a
strongly irregular data set belonging to case 2 is shown in
Figs. 3(a) and 3(b). Clearly, there are locations at which the
amplitude vanishes and the phase changes abruptly, see
circles in Figs. 3(a) and 3(b). This indicates the presence of
space-time defects [4]. From the phase representations we
determined the density of such defects for the two transi-
tions. The results are summarized in Fig. 3(c) where the
defect density is plotted versus the applied voltage for
case 1 (solid circles) and case 2 (open circles). In both
data sets, the defect density increases with increasing
voltage starting from zero, revealing that both series ex-
hibit a transition into a defect turbulent regime. Besides, in
both cases a regime dominated by irregular phase modu-
lations in the absence of defects is found at lower voltages,
see Figs. 2(b) and 2(d). In case 1, moreover, we observe
periodic limit cycle oscillations at the lowest value of U cf.
Fig. 2(a), preceding the irregular phase modulated regime.
Hence, the two series are indeed experimental manifesta-
tions of a transition from phase to defect turbulence, in
case 1 even a transition from a periodic limit cycle to defect
turbulence via a phase turbulent regime is captured.
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FIG. 3. (a) Phase and (b) amplitude representations of spatio-
temporal data obtained for case 2 at U � 1:04 V. Circles in (a)
and (b) exemplify the locations of phase defects. The displayed
time interval is 22.5 s. (c) Defect density versus the applied
voltage for case 1 (solid circles) and case 2 (open circles).
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Figure 3(c) also yields information about the difference
of the two cases: Not only does the defect density increase
much faster in case 2 than in case 1, but series 2 also
reaches a final defect density that is about two and a half
times larger than in series 1. Note that both series were
recorded up to values of U at which the Pt surface started to
oxidize which determines the upper meaningful value of
the voltage. Thus, in case 2 the system becomes more
turbulent than in case 1, indicating that the dimension of
the attractor is larger in case 2.

The Karhunen-Loève decomposition (KLD) dimension,
DKLD, represents a measure of the complexity of spatio-
temporal data and was shown to scale with the volume size
for extensively chaotic states [22]. Our space-time data
�DL�xi; tk� are known at M uniformly distributed instants
in time (M � 6000) and N discrete equidistant points in
space (N � 50). Let �0

DL�xi; tk� denote the deviations of
�DL�xi; tk� from their time average h�DL�xi; tk�i (averaged
over index k): �0

DL�xi; tk� � �DL�xi; tk� � h�DL�xi; tk�i.
Then, the elements rij of the two-point spatial correlation
matrix R are defined as rij � h�0

DL�xi��
0
DL�xj�i, where the

cornered brackets again denote the time average. The
dimension DKLD measures the number of linear eigen-
modes of R needed to capture a certain percentage P of
the statistical variance of the data. Qualitatively, an in-
crease in the number of degrees of freedom of an attractor
will be reflected by an increase in DKLD [22].

In Fig. 4, the values of DKLD are shown for the two series
of experiments and for a fixed percentage of P � 95%. As
for the defect density, there is a clear-cut difference be-
tween the two sequences. In case 2 (open circles), DKLD

increases more rapidly and reaches a plateau value, which
lies well above the highest DKLD determined for case 1
(solid circles). The larger value of DKLD evidences the
more turbulent character of the dynamics in case 2 as
well as a smaller length scale of dissipation below which
excitations are damped. Comparing the changes in DKLD

and in the defect density with increasing U, the develop-
ment of the two quantities is very similar in case 2. For
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FIG. 4. Karhunen-Loève decomposition dimension, DKLD, as a
function of the applied voltage for case 1 (solid circles) and
case 2 (open circles).
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FIG. 5. Time averaged spatial power spectra in the fully de-
veloped defect turbulent regime for a data set of both the non-
locally coupled (case 1, dashed line) and the locally coupled
situation (case 2, solid line). The light dashed lines are linear fits
(shifted in parallel for better visualization) obtained in the
respective scaling regions.
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case 1, however, the two curves show different shapes. We
attribute this to the fact that DKLD is sensitive to both phase
and amplitude turbulence, while the defect density cap-
tures the degree of disorder in the defect turbulent regime
only. For example, when increasing U from U � 1:06 to
U � 1:19 the periodic limit cycle becomes chaotic due to
irregular phase modulations [cf. Figs. 2(a) and 2(b)].
Hence, DKLD exhibits an increase from 2 to 3 (cf. Fig. 4)
while the defect density remains nearly constant (cf.
Fig. 3).

A measure of the degree of spatial correlation is ob-
tained from temporally averaged Fourier spectra of spatial
profiles of the interfacial potential. Figure 5 shows two
such power spectra in a log-lin diagram. The solid and
dashed lines were obtained for fully developed turbulent
time series of case 2 and case 1, respectively. Both curves
are linear within a certain range of k, indicating a
Lorentzian form of the autocorrelation function. The
slopes of the linear fits are proportional to the full width
at half maximum of the autocorrelation function and,
therefore, can be regarded as a measure of spatial correla-
tion in the data. Hence, the steeper slope in case 1 indicates
a larger degree of spatial coherence, supporting our con-
clusion that in case 1 the length scale of dissipation or
damping is larger than in case 2 as was inferred from Fig. 4.
Since the dominant mechanism for damping is provided by
the synchronizing effect of spatial coupling, we can deduce
that the coupling range is larger in case 1 than in case 2.
This exactly matches the theoretical predictions for cou-
pling in electrochemical systems: According to Eq. (1) the
range of the spatial coupling depends on �, being nonlocal
for a large distance between the two electrodes, and be-
coming more localized with decreasing distance. The re-
sults presented here give the first experimental support of
this theoretically predicted peculiarity of spatial coupling
in electrochemical systems.

In conclusion, we presented experimental data from an
oscillatory electrochemical reaction that exhibited a tran-
17410
sition from uniform limit cycle oscillations via phase tur-
bulence to defect turbulence. Thus, this transition scenario,
formerly discussed extensively in the framework of the
CGLE, also occurs in nonlocally coupled reaction-
transport type systems far from a supercritical Hopf bifur-
cation, evidencing that this route to spatiotemporal chaos is
more general than discussed so far. Moreover, the higher
defect density and larger KLD dimension for a shorter
distance between the working and the counterelectrode
provide the first experimental proof that the spatial cou-
pling range in electrochemical systems can indeed be tuned
by varying the aspect ratio of the electrochemical cell.
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