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The Hot Nonperturbative Gluon Plasma Is an Almost Ideal Colored Liquid
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We study properties of a gluon plasma above the critical temperature Tc in a generalized quasiparticle
approach with a Lorentz spectral function. The model parameters are determined by a fit of the entropy s
to lattice QCD data. The effective degrees of freedom are found to be rather heavy and of a sizable width.
With the spectral width being closely related to the interaction rate, we find a large effective cross section,
which is comparable to the typical distance squared of the quasiparticles. This suggests that the system
should be viewed as a liquid as also indicated by an estimate of the plasma parameter �. Furthermore,
within the quasiparticle approach we find a very low viscosity to entropy ratio, �=s� 0:2 for T > 1:05Tc,
supporting the recent conjecture of an almost ideal quark-gluon liquid seen at RHIC.
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The formation of a quark-gluon plasma (QGP) and its
transition to interacting hadronic matter—as occurred in
the early Universe—has motivated a large community for
more than two decades (cf. [1] and references therein).
However, the complexity of the dynamics in ultrarelativis-
tic nucleus-nucleus collisions—producing high density
matter for short time scales—has not been fully unravelled
and many properties of the new phase are still under debate
[2]. In central Au� Au collisions energy densities are
reached at Relativistic Heavy Ion Collider (RHIC) that
are far above the critical energy density ec � 1 GeV=fm3

for a phase transition to a QGP as expected from lattice
QCD calculations [3]. A strong radial expansion and ellip-
tic flow of hadrons, furthermore, point towards an early
generation of pressure and a high interaction rate in the
‘‘new phase’’ [4].

The latter observables are severely underestimated in
conventional string/hadron transport models [5–7]; how-
ever, hydrodynamical approaches do quite well in describ-
ing (at midrapidity) the collective properties of the system
for low and moderate transverse momenta [8]. The picture
thus emerges that the medium created in ultrarelativistic
nucleus-nucleus collisions for a couple of fm=c interacts
more strongly than hadron or string matter, and it exhibits
collective properties that resemble those of a liquid of low
shear viscosity � [9]. In fact, viscous hydrodynamical
calculations indicate a very low viscosity to entropy ratio,
�=s � 0:1–0:2 [10]. This picture is substantially different
from the expectation of a weakly coupled colored plasma.
There is a variety of models that address the properties of
this ‘‘new matter.’’ It might be some kind of (i) ‘‘epoxy’’
[11], i.e., a system of resonant or bound gluonic states with
large scattering length, (ii) a system of chirally restored
mesons, instanton molecules or equivalently giant collec-
tive modes [12], or (iii) a system of colored bound states of
quarks q and gluons g, i.e. gq, qq, gg, etc. [13].

In this Letter we provide quantitative arguments that
strongly interacting matter in a certain temperature range
above Tc is in a liquid phase. Our arguments are based on a
generalized quasiparticle description of the system taking
05=94(17)=172301(4)$23.00 17230
into account the spectral width � [14] in addition to the
quasiparticle mass [15–19]. The model parameters are
adjusted to nonperturbative results of lattice calculations.
Since the width is closely related to the interaction rate, we
can then estimate relevant transport properties, such as the
effective cross section and the shear viscosity, for tempera-
tures near Tc. Since lattice ‘‘data’’ are more precise for
quenched QCD we focus here on pure gluonic systems. We
expect, however, similar results for full QCD as argued
below. The quantities we address are dominated by ‘‘hard’’
momenta of the order of the temperature T. Accordingly,
the quasiparticle properties we are interested in are related
to the gluon propagator at hard momentum scales. In this
line we take into account dg � 2�N2

c � 1� � 16 transverse
gluons, and neglect Landau-damping contributions as
well as the collective longitudinal modes whose spectral
strength is suppressed for larger momenta [15,16].

In order to adjust the quasiparticle properties, we first
consider thermodynamic bulk properties within the
�-derivable formalism [20], which yields consistent re-
summed approximations [21]. To leading-loop order,
which is expedient for large coupling as argued in [14],
the entropy follows directly from the quasiparticle propa-
gator; cf. Ref. [15],
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where n�!� � �exp�!=T� � 1	�1 denotes the Bose distri-
bution function. We note that in the context of Fermi liquid
theory a corresponding approximation is called the dy-
namical quasiparticle (DQP) entropy [22]. In principle,
the resummed propagator � � �!2 � p2 ����1 is to be
calculated from a 1-loop Schwinger-Dyson equation. To
proceed at this point, however, we use a physically moti-
vated ansatz, assuming a Lorentzian spectral function,
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FIG. 1 (color online). The entropy s and the interaction mea-
sure w � e� 3p, in units of the Stefan-Boltzmann limits s0 and
p0, from our quasiparticle model in comparison to lattice cal-
culations [25]. The lower part shows the adjusted mass M and
width �.
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With the convention E2�p� � p2 �M2 � �2, the parame-
ters M2 and � are directly related to the real and imaginary
parts of the corresponding (retarded) self-energy, � �
M2 � 2i�!. At this point we emphasize that the entropy
functional (1) is not restricted to ‘‘strict’’ quasiparticles;
i.e., � need not be small compared to the typical energy.
Following the models [18] we parametrize the quasipar-
ticle mass in the gauge invariant and momentum indepen-
dent asymptotic form

M2 �
Nc

6
g2T2; (3)

with Nc � 3 and the running coupling

g2�T� �
48�2

11Nc ln���T � Ts�=Tc�
2 ; (4)

which permits an enhancement near Tc [18,23]. Likewise,
we parametrize the width in the form �� g2T lng�1 [24]
or, equivalently, in terms of M [14],

� �
3

4�
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T2
T ln

c

�M=T�2
; (5)

where c is related to the magnetic sector of QCD. We note
that M and �, as parametrizations of the complex-valued
self-energy � at the relevant large momenta near the
‘‘mass shell,’’ are not related by a dispersion relation.

In the upper part of Fig. 1 we compare the lattice results
[25] to the quasiparticle entropy; the fitted parameters are
� � 2:42, Ts � 0:46, and c � 14:4. We also display the
interaction measure e� 3p (the pressure p and the energy
density e are evaluated by thermodynamic relations; cf.
[18]), which is particularly sensitive to interaction effects.
We emphasize that the remarkable agreement with the
lattice data is nontrivial because the functional relation
between � and M is fixed; cf. (5).

The adjusted quasiparticle mass and width are displayed
in the lower part of Fig. 1. The quasiparticles are rather
heavy in line with direct lattice calculations [26]. For T *

1:05Tc the width is sizable, reaching more than 50% of the
mass in a large temperature range. The picture of the
strongly interacting plasma is, thus, a system of massive
excitations with a large collisional width or short mean-
free path—opposite to the original concept of narrow
quasiparticles. Near Tc, however, the width is close to
zero. Although we have parametrized � in the ‘‘perturba-
tive’’ form (5) we expect that the inferred temperature
dependence is generic: near Tc the width has to be small
due to the small entropy at T � Tc [14]. This is in line with
a critical slowing down near a phase transition. Away from
Tc one has to expect a large width due to the strong
coupling and increasing reaction rates. The physical pro-
cesses contributing to the width are then gg $ gg scatter-
ings as well as splitting and fusion reactions gg $ g or
gg $ ggg, etc. Summing up the elastic and inelastic
channels (and neglecting Bose-enhancement for the final
states), we end up with the total binary reaction rate
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where ��x;y;z�� �x�y�z�2�4yz and s � �P1 � P2�
2.

In (6) we have introduced the shorthand notation

~Tr P    � dg

Z d!
2�

d3p

�2��3
2!��!�$�!�$�P2�n�!�   

(7)

for the thermally weighted trace over the quasiparticle
degrees of freedom. The $�P2� function ensures that
only timelike reaction processes are taken into account in
Eq. (6). The interaction rate, on the other hand, is also
related to the imaginary part of the self-energy; with a
similar factorization as in Eq. (6), dNcoll=dVdt � �N�.
Here the particle density N� � ~Tr1 is the timelike part of
the integrated distribution function. The resulting effective
total cross section,

h�i � �N�=I2; (8)

is displayed in the top part of Fig. 2 as a function of T
(using Tc � 0:26 GeV for quenched QCD). It rises from
� 0 at T � Tc to about 20 mb at T � 1:1Tc, and drops
again at higher temperatures. We note that similarly large
values for parton cross sections have been used in the
phenomenological studies in Ref. [27]. These cross sec-
tions are larger by an order of magnitude than typical
perturbative estimates for gg scattering (cf. the hatched
1-2
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FIG. 2 (color online). Upper part: The effective total cross
section h�i, Eq. (8), in comparison to the perturbative estimate
�pQCD � 9�&2=2m2

Debye. Second part from top: The percolation
measure #, Eq. (9); the critical value is #c � 1:18 [29]. Third
part from top: The plasma parameter �, Eq. (10). Bottom part:
The ratio of shear viscosity to entropy in our quasiparticle model
in comparison to the lattice calculation [36] as well as to the
next-to-leading log result [31]. Note that �=s � 0:1–0:2 was
estimated from hydrodynamical fits to RHIC data [10].
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band in the top part of Fig. 2) where the Debye mass mDebye

is used as an infrared cutoff. However, for strongly coupled
plasmas the Debye mass may not be the proper regulator as
pointed out by Thoma [28].

A question of particular interest is the phase structure of
the strongly interacting system, which in Refs. [9,28] was
surmised a liquid. In our quasiparticle approach we can
address this question quantitatively by comparing the ef-
fective cross section to the typical distance squared of the
quasiparticles to obtain information about critical cluster-
17230
ing (percolation) [29]. If

# � h�iN2=3
� (9)

is lower than the critical percolation parameter #c � 1:18
[29] the system is in the kinetic (dilute gas) regime, while
for # > #c percolation sets in and multiparticle interac-
tions take over as characteristic for a liquid or solid with
attractive interactions. As shown in the second part of
Fig. 2, # is larger than #c for the temperature range
�1:05–4�Tc. This suggests that the QCD plasma, up to
rather large energy densities, is in a liquid or solid phase.

In order to distinguish a liquid from, possibly, a solid
phase we consider the plasma parameter [28]. Assuming
equal (color) magnetic and electric energies we estimate

� � 2
Ncg

2

4�N�1=3

1

hTkini
; (10)

with N being the full particle density (including the space-
like contributions), and the average kinetic energy

hTkini � N�1
�
~Tr�!�

������
p2

q
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Empirically it is well established for various attractive
interactions that systems with 1 & � & 100 are in a liquid
phase [30]. Since the ‘‘critical’’ values may slightly vary
for different systems, we emphasize for the present case
that the criteria �c � 1 for a gas-liquid phase transition and
# � #c for percolation are met at the same temperature; cf.
Fig. 2. Thus our results suggest that the gluon plasma is a
liquid for temperatures between Tc and 4Tc .

An important property of this gluon liquid is its shear
viscosity �. For weak coupling, it has been calculated in a
transport approach from a Boltzmann equation to next-to-
leading log (NLL) order [31], �NLL � T3=�g4 lng�1�.
However, for strongly coupled systems such an approach
(assuming narrow quasiparticles) might be questionable
and the Kubo formalism more appropriate instead [32].
Here the viscosity is evaluated from the slope of the Fourier
transform of the spectral function h�Tij�x�; Tij�y�	i for ! !

0, where Tij denotes the traceless part of the spatial stress
tensor. At 1-loop order (and neglecting the longitudinal
contributions) this corresponds directly to our quasiparticle
picture which yields (cf. [33])
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Note that in the perturbative limit Eq. (12) [ � T4=��
T3=�g2 lng�1�] does not approach �NLL � T3=�g4 lng�1�.
This comes about as follows: The shear viscosity � is
inversely proportional to the transport cross section �trans

in which the total scattering rate is weighted by �1� cos%�
with % denoting the scattering angle [34]. In the weak
coupling limit the gluon scattering is strongly forward
peaked with a low gain in transverse momentum. This
implies that many scatterings, corresponding to ladder
1-3
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diagrams in the Kubo formalism, have to be resummed in
order to achieve a significant transverse momentum de-
flection and transport cross section. However, in the case of
strong coupling the transport mean-free path �trans �
1=��transN�� is expected to become comparable to the total
mean-free path �� 1=��N��, as taken into account by
Eq. (12). Thus, while a resummation of ladder diagrams is
beyond the scope of the quasiparticle model, it should yield
a useful approximation near Tc [35].

In the bottom part of Fig. 2 we display the ratio of the
shear viscosity to entropy. Although the lattice results [36]
still have large uncertainties, they are distinctly smaller
than the (extrapolation of the) next-to-leading log result
[31]. For T * 1:05Tc our quasiparticle result is almost
constant, �DQP=s � 0:2— in good agreement with the es-
timate �=s � 0:1–0:2 from hydrodynamical fits to RHIC
data [10]. The fast increase near Tc, which is related to the
characteristic temperature dependence of � and thus also
of h�i, can be seen as a precursor of the phase transition.
We mention that the conjectured lower limit [37], �=s �
1=�4��, is approximately obtained for T � 1:1Tc when
calculating � in a nonrelativistic limit of massive quasi-
particles and assuming isotropic transport cross sections
[35]. Since �trans � �, this estimate should give a lower
bound for the viscosity. In conclusion, the quasiparticle
model gives the picture of an almost ideal gluon liquid in
the relevant temperature range.

The extension of the quasiparticle approach to the
physical case (full QCD) is straightforward; besides a
change of Tc, quarks and gluons have the same quasipar-
ticle properties up to group factors [38]. The consequences
for ultrarelativistic heavy-ion collisions at RHIC become
immediately clear: The large cross sections imply a rapid
thermalization of the initial configuration once the initial
hard scatterings have produced a high density of minijets.
The latter ‘‘preequilibrium’’ processes happen on a scale of
tpre � 2RA=� � 0:14 fm=c for top RHIC energies such
that the equilibration time is essentially governed by the
gg $ g, gg $ gg, gg $ ggg, and gg $ gggg processes
as also suggested in [39]. After approximate thermaliza-
tion—of order 0.5 to 1 fm=c— the system behaves like an
almost ideal massive colored parton liquid and exhibits a
large pressure. This early pressure is responsible for the
transverse flow of hadrons, and the large cross sections
result in an almost complete suppression of far-side jets in
central collisions.

The authors thank C. Greiner, S. Leupold, R. Pisarski, D.
Teaney, M. Thoma, and X. N. Wang for helpful discussions
and valuable suggestions. This work was supported by
BMBF.
[1] Quark Matter 2002 [Nucl. Phys. A 715, 1 (2003)]; Quark
Matter 2004 [J. Phys. G 30, S633 (2004)].

[2] Strange Quark Matter 2003 [J. Phys. G 30, 1 (2004).
[3] F. Karsch et al., Nucl. Phys. B605, 579 (2001).
17230
[4] H. Weber et al., Phys. Rev. C 67, 014904 (2003).
[5] E. L. Bratkovskaya et al., Phys. Rev. C 67, 054905 (2003);

69, 054907 (2004).
[6] W. Cassing, K. Gallmeister, and C. Greiner, Nucl. Phys.

A735, 277 (2004).
[7] K. Gallmeister and W. Cassing, Nucl. Phys. A748, 241

(2005).
[8] P. Kolb and U. Heinz, nucl-th/0305084.
[9] E. V. Shuryak, Prog. Part. Nucl. Phys. 53, 273 (2004).

[10] D. A. Teaney, J. Phys. G 30, S1247 (2004).
[11] G. E. Brown, C.-H. Lee, M. Rho, and E. V. Shuryak, Nucl.

Phys. A740, 171 (2004).
[12] G. E. Brown, C.-H. Lee, and M. Rho, Nucl. Phys. A747,

530 (2005).
[13] E. V. Shuryak and I. Zahed, Phys. Rev. D 70, 054507

(2004).
[14] A. Peshier, Phys. Rev. D 70, 034016 (2004).
[15] J. P. Blaizot, E. Iancu, and A. Rebhan, Phys. Rev. D 63,

065003 (2001).
[16] A. Peshier, Phys. Rev. D 63, 105004 (2001).
[17] A. Rebhan and P. Romatschke, Phys. Rev. D 68, 025022

(2003).
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