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Mass of the Bc Meson in Three-Flavor Lattice QCD
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We use lattice QCD to predict the mass of the Bc meson. We use the MILC Collaboration’s ensembles
of lattice gauge fields, which have a quark sea with two flavors much lighter than a third. Our final result is
mBc � 6304� 12�18

�0 MeV. The first error bar is a sum in quadrature of statistical and systematic
uncertainties, and the second is an estimate of heavy-quark discretization effects.
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Recently there has been a significant breakthrough in
numerical lattice calculations of QCD [1]. With new, im-
proved techniques for incorporating light sea quarks, lat-
tice QCD agrees with experiment at the few percent level
for a wide variety of quantities. This progress suggests that
lattice QCD could play a big role in particle physics,
especially as an aid to understanding the flavor sector of
the standard model [2].

In flavor physics, the central aim is to search for evi-
dence of new phenomena. Before applying results from
numerical lattice QCD for such purposes, it is helpful to
have as many tests as possible. Although lattice gauge
theory has a solid mathematical foundation, numerical
simulations are not simple. The impressive results of
Ref. [1] have been achieved only with the fastest method
for simulating light quarks. The price for speed is an
unproven assumption (discussed below), which clearly
warrants further scrutiny. In addition, the cutoff effects of
heavy quarks are controlled using effective field theories.
Although most heavy-quark phenomenology relies on this
framework, it is important to find out how well it describes
discretization errors in lattice calculations.

The ideal way to test a theoretical technique is to predict
a mass or decay rate that is not well measured experimen-
tally, but will be measured precisely soon. Some examples
are in leptonic and semileptonic decays of charmed me-
sons, which are being measured in the CLEO-c experi-
ment. They are sensitive to both the light-quark and heavy-
quark methods, and are under investigation [3,4].

Another example, pursued here, is the mass of the
pseudoscalar Bc meson, the lowest-lying bound state of a
bottom antiquark ( �b) and a charmed quark (c). The Bc
mass principally tests the heavy-quark methods of lattice
QCD. Based on experience with �bb [5] and �cc [6] mass
splittings, we expect only mild sensitivity to the light-
quark mass (of the sea quarks) once the mass is small
enough to allow uninhibited creation and annihilation of
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virtual light-quark pairs. Preliminary versions of this work
have been given at conferences [7].

Until now, Bc has been observed only in the semilep-
tonic decay B�

c ! J= l�	l, with a mass resolution of
around 400 MeV [8,9]. During run 2 of the Fermilab
Tevatron, Bc is expected be observed in nonleptonic de-
cays, with a mass resolution estimated to be 20–50 MeV
[10]. Our total uncertainty is much smaller than the cur-
rent experimental accuracy, and comparable to the projec-
tions, so we may claim to be predicting the mass of the Bc
meson.

Heavy-quark discretization effects are a challenge, be-
cause feasible lattice spacings a are about the same as the
Compton wavelength of the bottom and charmed quarks.
The distances are both shorter than the typical distance of
QCD, which is about 1 fm. The obvious strategy is to use
effective field theories to separate long- and short-distance
scales. This reasoning has led to the development of non-
relativistic QCD (NRQCD) for quarkonium [11] and
heavy-quark effective theory (HQET) for heavy-light me-
sons [12]. In lattice gauge theory, this reasoning has led to
two systematic methods for discretizing the heavy-quark
Lagrangian: lattice NRQCD [11,13] and the Fermilab
heavy-quark method [14,15]. A strength of both is that
the free parameters of the lattice Lagrangian can be fixed
with quarkonium. Then, with no free parameters, one
obtains results for heavy-light systems (such as D and B
mesons). The same procedure applies here: we obtain mBc
with the same bare quark masses that reproduce the bot-
tomonium [5] and charmonium [6] spectra.

It is beyond the scope of this Letter to review the details
of heavy quarks in lattice gauge theory [16]. The couplings
of the Lagrangian are adjusted so that [15]

L lat �
:
LQCD � m� �h�h� � �h�h��

�
X

n

asnfn�mQa�On; (1)
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where �
:

can be read ‘‘has the same mass spectrum as.’’
The m term is an unimportant overall shift in the mass
spectrum; h� (h�) is a effective field for quarks (anti-
quarks); the On are the effective operators of the heavy-
quark expansion, of dimension dimOn � 4� sn, sn � 1;
and a is the lattice spacing. The coefficients fn arise from
the short-distance mismatch between lattice gauge theory
and continuum QCD. By choosing an improved lattice
Lagrangian Llat, the fn can be reduced. In practice, how-
ever, one must vary a and also estimate the effects of the
leading On on the mass spectrum.

Our calculation employs an idea from a quenched cal-
culation [17] (omitting sea quarks), namely, to use lattice
NRQCD for the b quark and the Fermilab method for the c
quark. The lattice NRQCD Lagrangian [13] has a better
treatment of interactions of order v4, where v is the heavy-
quark velocity. The Fermilab Lagrangian [14] has a better
treatment of higher relativistic corrections, which is help-
ful since the velocity of the c quark in Bc is not especially
small, v2c 	 0:5. Thus, we expect this combination to
control discretization effects well. This choice also means
that our calculation directly tests the heavy-quark
Lagrangians used in Ref. [1].

We work with ensembles of lattice gauge fields from the
MILC Collaboration [18]. Each ensemble contains several
hundred lattice gauge fields, so statistical errors are a few
per cent. The gluon fields interact with a sea of ‘‘2� 1’’
quarks: one with mass ms tuned close to that of the strange
quark, and the other two as light as possible. In this
work we use ensembles with light mass ml � 0:1ms,
ml � 0:2ms, and ml � 0:4ms. The gluon and sea-quark
Lagrangians are improved to reduce discretization effects.
We use three lattice spacings, a 	 1

11 , 1
8 , 2

11 fm. Further
details are in the MILC Collaboration’s papers [18].

A drawback of the MILC ensembles is that the sea
quarks are incorporated with ‘‘staggered’’ quarks. A single
staggered quark field leads to four species, or ‘‘tastes,’’ in
the continuum limit. Sea quarks are represented (as usual)
by the determinant of the staggered discretization of the
Dirac operator. To simulate 2 tastes (1 taste), the square
root (fourth root) of the 4-taste determinant is taken. The
validity of this procedure is not yet proven for lattice QCD,
although a proof does go through in at least one (nontrivial)
context [19]. Moreover, one finds that interacting improved
staggered fields split into quartets [20] as is necessary.
Since our prediction of the Bc mass tests this ingredient
of the calculation (albeit indirectly), we do not assign a
numerical error bar to this issue.

As in Ref. [17], we calculate mass splittings, namely,

� � � mBc � � �m �m��=2; (2)

�DsBs � mBc � � �mDs
� �mBs�; (3)

where �m � �m�c � 3mJ= �=4, �mDs
� �mDs

� 3mD

s
�=4,

and �mBs � �mBs � 3mB

s
�=4 are spin-averaged masses.

We refer to � �m �m��=2 and � �mDs
� �mBs� as the ‘‘quark-
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onium’’ and ‘‘heavy-light’’ baselines, respectively. Our
result for mBc comes from our calculated a� � and
a�DsBs (in lattice units), combined with the lattice spacing
a and the experimental measurements of the baselines. We
use the 2S-1S splitting of bottomonium to define a, but on
the MILC ensembles several other observables would
serve equally well [1].

Many uncertainties cancel in mass splittings. Lattice
calculations integrate the QCD functional integral with a
Monte Carlo method, and the ensuing statistical error
largely cancels when forming a difference. The mass shifts
m in Eq. (1) drop out. The spin averaging cancels the
contribution of the hyperfine operator �h�i� �Bh�. (We do
not spin-average � with �b, because the latter remains
unobserved.) The discretization errors from further terms
in Eq. (1) cancel to some extent, especially with the
quarkonium baseline. Most crucially, all masses in
Eqs. (2) and (3) are ‘‘gold plated’’ [1] in the sense that
the hadrons are stable and not especially sensitive to light
quarks. (Hence we use Ds and Bs, not D and B.)

We turn now to a discussion of our numerical work. First
we discuss briefly how to compute the meson masses. Then
we consider systematic effects that can be addressed di-
rectly by varying the bare quark masses (light and heavy).
Finally, we consider the remaining discretization effects,
by changing the lattice spacing and by studying the cor-
rections in Eq. (1).

In lattice QCD, each meson mass is extracted from a
two-point correlation function, which contains contribu-
tions from the desired state and its radial excitations. We
use constrained curve fitting [21], usually including 5
states, but checking the results with 2–8 states in the fit.
We find that the extraction of the raw masses is straightfor-
ward on every ensemble.

Statistical errors are obtained with the bootstrap method.
The statistical precision on � � is about 4% and on �DsBs
about 1.5%. But since � � 	 40 MeV and �DsBs 	

�1200 MeV, the statistical error on mBc ends up being
much larger with the heavy-light baseline.

Figure 1 shows how the splittings depend on the light-
quark mass ml for the ensembles with a 	 1

8 fm. The
dependence on ml is hardly significant. We extrapolate
linearly in ml=ms, down to the value that reproduces the
pion mass [2]. The mild dependence on ml also suggests
that the uncertainty from the known (but small) mistuning
of the strange quark sea is completely negligible.

The bare masses of the heavy quarks are chosen as
follows. Since the overall mass is shifted [by m in
Eq. (1)], we compute the kinetic energy of �bb and �cc
mesons of (small) momentum p and choose the bare b
and c quark masses so that it is p2=2m, where m is the
physical �QQ mass. The statistical and systematic uncer-
tainties of the kinetic energy imply a range of bare quark
masses. We compute the effect on Bc for different bare b
and c masses and derive an error of 10 MeV (5 MeV) in
� � and �DsBs from this source.
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TABLE I. Estimated shifts (in MeV) of masses and splittings
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FIG. 1. Sea-quark mass dependence of � � and �DsBs .
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Figure 2 shows how � � depends on lattice spacing a.
The change is insignificant. Lattice spacing dependence
stems from all parts of the lattice QCD Lagrangian. In our
case, the heavy-quark discretization effects, especially for
the c quark, are expected to dominate. Unfortunately, the
dependence onmca [of the coefficients in Eq. (1)] does not
provide a simple Ansatz for extrapolation.

We shall treat discretization errors with Eq. (1), using
calculations of the short-distance mismatch and estimates
of the On. This approach is itself uncertain, but it is
preferable to ignoring the issue. The results of such an
analysis are given in Table I, and the following paragraphs
explain how the entries are obtained.

As usual, we classify the operators On in Eq. (1) accord-
ing to the power-counting scheme of NRQCD (or, for Ds
and Bs mesons, HQET). Table I lists those of order v4 in
NRQCD; in HQET they are of order 1=mn

Q, n � 1, 2, 3, 3.
The spin-orbit interaction �h�i� � �D�E�h� is omitted,
because its matrix elements vanish in the S-wave states
considered here.

The contribution of the hyperfine interaction �h�i� �
Bh� cancels for spin-averaged masses �m, by construction,
but we must still estimate its effect on m� and mBc . In the
heavy-quark Lagrangians we are using, the hyperfine cou-
pling is correctly adjusted only at the tree level. Indeed we
find discrepancies in the hyperfine splittings mD


s
�mDs

and mJ= �m�c for the c quark and mB

s
�mBs for the b

quark. The size of the discrepancy agrees with the expec-
tation from the one-loop mismatch in the coefficient. The
hyperfine entries for m� and mBc are obtained by combin-
0.00 0.05 0.10 0.15 0.20
a (fm)

40

50

∆ ψ
Υ
 (

M
eV

)

FIG. 2. Lattice-spacing dependence of � �.

17200
ing the coefficient mismatch with the computed hyperfine
splittings.

For mBc ,
1
2 �m , and 1

2m�, the matrix elements of the
Darwin term �h�D �Eh� and the relativistic corrections
�h��D2�2h� and

P3
i�1

�h�D4
i h

� are obtained from potential
models. For �mDs

and �mBs we use HQET dimensional
analysis: hD �Ei � ��3, hD4i � ��4, with �� � 700 MeV.
Next we multiply the estimated matrix elements hOni with
the mismatch coefficients fn�mQa�. We have explicit tree-
level calculations of them for the Fermilab Lagrangian
used for the c quark. For the b quark the mismatch starts
at order �s, so we take fn to be of order �s with unknown
sign. The resulting shifts from the c quark are larger but
their sign is definite.

The entries in Table I for �D2�2 and D4
i are uncertain.

The cancellations across each row are reliable, but the
overall magnitude could be larger. The same potential
model suggests a shift in our mhc � �m of about
�10 MeV, consistent with the computed discrepancy
[1,6]. Thus the charmonium spectrum suggests that they
are reasonable.

Table I suggests that our results for mBc will be too low,
and that mBc will be lower with the heavy-light baseline
than with the quarkonium baseline. We could apply the
shifts in Table I to our lattice QCD results. Our aim,
however, is to test lattice QCD. Therefore, we treat these
shifts not as corrections but as uncertainties. Since we
claim to know the sign in the important cases, the associ-
ated error bars are asymmetric. Repeating this analysis at
other lattice spacings yields consistent error estimates.

After extrapolating the light-quark mass and accumu-
lating the other systematic uncertainties we find (at
a � 1

8 fm)

� � � 39:8� 3:8� 11:2�18
�0 MeV; (4)

�DsBs � ��1238� 30� 11�0
�37� MeV; (5)

where the uncertainties are, respectively, from statistics
(after extrapolating in ml=ms), tuning of the heavy-quark
masses, and heavy-quark discretization effects. The results
for � � at a � 1

11 , 2
11 fm are completely consistent. For the

Bc mass we find
� � and �DsBs at a � 8 fm. Entries show what should be added
to the masses and splittings to compensate for discretization
errors. Dots ( � � � ) imply the entry is negligible.

Operator mBc
1
2 �m 

1
2m� � � �mDs

�mBs �DsBs

� � B �14 0 �3 �17 0 0 �14
Darwin �3 �3 �1 �1 �4 � � � �1
�D2�2 �34 �10 �3 �24 � � � � � � �34
D4
i �16 �5 �2 �11 � � � � � � �16

Total �18 �37
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FIG. 3. Comparison of theoretical work, with references in
brackets and our equation numbers in parentheses.

PRL 94, 172001 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
6 MAY 2005
mBc � 6304� 4� 11�18
�0 MeV; (6)

mBc � 6243� 30� 11�37
�0 MeV; (7)

restoring, respectively, the quarkonium and heavy-quark
baselines. We have carried out more checks on the quark-
onium baseline, so we take Eq. (6) as our main result.
Given the rough nature of the last error bar, we consider
the agreement of the two results to be reasonable. Further
work with more highly improved Lagrangians and at finer
lattice spacing should reduce this error.

Our results are compared to other theoretical predictions
in Fig. 3, including potential models [22,23], quenched
lattice QCD [17], and potential NRQCD [24–26]. The
quarkonium baseline is shown for reference. Our result is
so much more accurate than the previous lattice QCD
result [17], simply because we have eliminated the
quenched approximation. If our prediction, Eqs. (6) and
(7), is borne out by measurements, it lends confidence in
lattice QCD, not only in MILC’s method for including sea
quarks, but also in the control of heavy-quark discretiza-
tion effects using effective field theory ideas. Moreover,
within this framework it is clear how to improve the lattice
QCD Lagrangian to reduce the remaining uncertainties.
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