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How to Measure Subdiffusion Parameters
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We propose a method to measure the subdiffusion parameter � and subdiffusion coefficient D� which
are defined by means of the relation hx2i � 2D�

��1��� t
�, where hx2i denotes a mean square displacement of a

random walker starting from x � 0 at the initial time t � 0. The method exploits a membrane system
where a substance of interest is transported in a solvent from one vessel to another across a thin membrane
which plays here only an auxiliary role. We experimentally study a diffusion of glucose and sucrose in a
gel solvent, and we precisely determine the parameters � and D�, using a fully analytic solution of the
fractional subdiffusion equation.
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FIG. 1. Schematic view of the membrane system under study.
Subdiffusion occurs in various systems. We mention
here a diffusion in porous media or charge carriers trans-
port in amorphous semiconductors [1,2]. The subdiffusion
is characterized by a time dependence of the mean square
displacement of a Brownian particle. When the particle
starts from x � 0 at the initial time t � 0 this dependence
in a one-dimension system is

hx2i �
2D�

��1� ��
t�; (1)

where D� is the subdiffusion coefficient measured in the
units �m2=s�� and � obeys 0<� 	 1. For � � 1 one
deals with the normal or Gaussian diffusion characterized
by the linear growth of hx2i with t which results from the
central limit theorem applied to many independent jumps
of a random walker. The anomalous diffusion occurs when
the theorem fails to describe the system because the dis-
tributions of summed random variables are too broad or the
variables are correlated to each other. The subdiffusion is
related to an infinitely long average time that a random
walker waits to make a finite jump. Then, its average
displacement squared, which is observed in a finite time
interval, is suppressed.

The subdiffusion has been recently extensively studied,
see, e.g., [1–4]. While the phenomenon is theoretically
rather well understood, there are very few experimental
investigations. There is no effective method to experimen-
tally measure � and D�. In the pioneering study [4], where
D� was determined experimentally for the first time, the
interdiffusion of heavy and light water in a porous medium
was observed by means of NMR. D� was found, using the
special case � � 2=3 solution of the subdiffusion equation.
The procedure is neither very accurate nor of general use.

Our aim here is to present a method to precisely measure
� and D�. The method is described in detail in [5]; here we
give only a brief account of it. For practical reasons, we
choose for the experimental study a membrane system
containing two vessels with a thin membrane in between
which separates the initially homogeneous solute of the
substance of interest from the pure solvent. A schematic
05=94(17)=170602(4)$23.00 17060
view of the system is presented in Fig. 1. The membrane
does not affect values of investigated parameters. Instead
of the mean square displacement (1), our method refers to
the temporal evolution of the thickness � of the so-called
near-membrane layer which is defined as the distance from
the membrane where the substance concentration C�x; t�
drops 
 times with respect to the membrane surface; i.e.,

C��; t� � 
C�0�; t�; (2)

where x � 0 is the position of a thin membrane and 
 is an
arbitrary number smaller than unity; we used 
 � 0:12,
0.08, and 0.05.

In our previous paper [6], we demonstrated that ��t� �
A

��
t

p
for the normal diffusion. Studying experimentally the
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FIG. 2. The experimentally measured thickness of the near-
membrane layer � as a function of time t for glucose with 
 �
0:05 (�), 
 � 0:08 (�), 
 � 0:12 (4), and for sucrose with 
 �
0:08 (�). The solid lines represent the power function At0:45,
while the dotted lines correspond to the function A

��
t

p
.
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diffusion of glucose and sucrose in a gel solvent, we show
here that ��t� � At with  < 0:5. A gel is built of large
and heavy molecules which form a polymer network. Thus,
the gel water solvent resembles a porous material filled
with water. Because a mobility of sugar molecules is
highly limited in such a medium, the subdiffusion is
expected.

For each measurement, we prepared two gel samples:
the pure gel (1.5% water solution of agarose) and the same
gel dripped by the solute of glucose or sucrose. The con-
centration of both sugars in the gel was fixed to be either
0.1 or 0.07 �mol=dm3�, but our results appear to be inde-
pendent of the initial concentration. The two vessels of the
membrane system were then filled with the samples and the
(slow) processes of the sugar transport across the mem-
brane started. Since the concentration gradient was in the
vertical direction only, the diffusion is expected to be one-
dimensional. We used an artificial membrane of the thick-
ness below 0.1 mm. The membrane was needed for two
reasons. It initially separated the homogeneous sugar sol-
ute in one vessel from the pure gel in another one. It also
precisely fixed the geometry of the whole system.

The sugar concentration was measured by means of the
laser interferometric method. The laser light was split into
two beams. The first one went through the system paral-
lelly to the membrane surface while the second (reference
one) went directly to the light detecting system. The inter-
ferograms, which appear due to the interference of the two
beams, are controlled by the refraction coefficient of the
solute which is turn depends on the substance concentra-
tion. The analysis of the interferograms allows one to
reconstruct the time-dependent concentration profiles of
the substance transported in the system and to find the time
evolution of the near-membrane layers which are of our
main interest here. The experimental setup is described in
detail in [7]. It consists of the cuvette with membrane, the
Mach-Zehnder interferometer including the He-Ne laser,
TV-CCD camera, and the computerized data acquisition
system.

When the sugar was diffusing across the membrane we
were recording the concentration profiles in the vessel
which initially contained pure gel. The examples of typical
interferograms and extracted concentration profiles are
presented in [7]. The thickness of a near-membrane layer
� was calculated from the measured concentration profiles
C�x; t� according to the definition (2), and thus the thick-
ness of the near-membrane layer as a function of time was
found.

In Fig. 2 we present ��t� for the glucose and the sucrose
of initial concentration 0.1 �mol=dm3�. The analysis of
errors, in particular, those shown in Fig. 2, is described in
[5]. For the glucose we present ��t� for three values of 
 �
0:12, 0.08, and 0.05, while for the sucrose 
 � 0:08. As
seen, the time dependence of � is well described by the
power function At with the common index  � 0:45. The
17060
lines representing �
��
t

p
are also shown for comparison. It is

evident that the measured index  is smaller than 0.5. There
are some deviations of our data from At0:45 at t < 300 s,
but our final theoretical formulas, in particular, the power
law behavior, hold in the long time approximation.

Fitting the experimental data shown in Fig. 2, we found
the universal index  � 0:45� 0:005 and the parameter A
which depends on 
; for glucose A � 0:091� 0:004 when

 � 0:05, A � 0:081� 0:004 when 
 � 0:08, and A �
0:071� 0:004 when 
 � 0:12; for sucrose A � 0:064�
0:003 when 
 � 0:08. In each case �2 per degree of free-
dom was smaller than 1.

The subdiffusion is described by the equation with frac-
tional derivative [1,8]

@C�x; t�
@t

� D�
@1�

@t1�

@2C�x; t�

@x2
; (3)

which for �< 1 corresponds to an infinitely long average
waiting time of the random walker—the physical situation
in a gel solvent resembling the porous medium. We solve
Eq. (3) in the region x > 0 with the initial condition
C�x; 0� � C0 for x < 0 and C�x; 0� � 0 for x > 0. In fact,
we solve Eq. (3) for the Green function G�x; t; x0� satisfy-
ing the initial condition G�x; t � 0; x0� � ��x x0�, and
then, C�x; t� is calculated using the formula

C�x; t� �
Z

G�x; t; x0�C�x0; 0�dx0: (4)

To find G�x; t; x0� we use the relation [5]

G�x; t; x0� �
Z t

0
dt0J�0�; t0; x0�Gref�x; t t0; 0��; (5)
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where x > 0 while x0 < 0; J�x; t; x0� is the flux associated
with G�x; t; x0� which for x � 0 gives the flow across the
membrane; Gref�x; t; x0� is the Green function for the half-
space system with x > 0 and the fully reflecting wall at
x � 0.

Using Eqs. (4) and (5), C�x; t� can be written as

C�x; t� �
Z t

0
dt0W�t0�Gref�x; t t0; 0��; (6)

where the function W�t�, which equals

W�t� �
Z 0

1
dx0J�0

�; t; x0�C�x0; 0�;

depends on the initial and boundary conditions.
Since the subdiffusion equation is of the second order

with respect to x, it requires two boundary conditions at the
membrane. The first one assumes the continuity of the flux
J, given by the generalized Fick law [9], which flows
through the membrane; i.e., J�0; t� � J�0�; t�. However,
there is no obvious choice of the second boundary condi-
tion. Therefore, we assume that the missing condition is
given by a linear combination of concentrations and flux;
i.e.,

b1C�0
; t� � b2C�0

�; t� � b3J�0; t� � 0: (7)

Two boundary conditions

C�0�; t� �
1 �
1� �

C�0; t�; (8)

and

J�0; t� � ��C�0; t�  C�0�; t��; (9)

discussed in [6,10] and [11], respectively, are of the general
form (7). The parameters � and � control the membrane
permeability [6,10,11]. The adopted initial condition com-
bined with Eq. (7) provide

W�t� � C0
b1

�������
D�

p

b1  b2

1

t1�=2

�
X1
k�0

dk

���=2 k�1 �=2��
1

tk�1�=2�
; (10)

where d � b3
�������
D�

p
=�b1  b2�. The Green function Gref ,

which enters Eq. (6), can be easily obtained by means of
the method of images [1] as Gref�x; t; x0� � G0�x; t; x0� �
G0�x; t; x0� with the known Green function G0 for the
homogeneous system [1]. Having the explicit functions W
and Gref , we write down, using Eq. (6), the concentration
profile as

C�x; t� �
Z t

0
dt0W�t t0�

2

�x
H1 0

1 1

��
x������������

D�t0�
p

�
2=�

��������1

1

1
2
�

�

;

(11)

where H denotes the Fox function.
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We first consider the long time approximation of the
formula (11) which corresponds to the small s limit of the
Laplace transform Lff�t�g �

R
1
0 dtf�t�est. Taking into

account only the leading contribution in the small s limit,
Eq. (11) gets the form

C�x; t� �
2C0b1

�b1  b2��
H1 0

1 1

��
x�����������
D�t

�p

�
2=�

��������1

0

1
2
�

�

: (12)

The solution (12) can also be obtained directly from
Eq. (11), taking into account only the k � 0 term in the
expansion (10).

The series (10) can be approximated by the first term if
d � t1�=2. When the boundary condition is of the form
(8), the condition is trivially satisfied for any t as b3 � d �
0 in this case. For the boundary condition (9), we have � �
b1=b3 � b2=b3, and the long time approximation holds
if

� �������
D�

p

2�

�
1=�1�=2�

� t: (13)

For the membranes used in our experiments � is of order
102 �mm=s� and assuming that we deal with the normal
diffusion D is roughly 105 �mm2=s�. Thus, the left-hand
side (lhs) of Eq. (13) is estimated as 2 s. Since 10 s is the
time step of our measurements which extend to 2500 s, the
condition (13) is fulfilled. We have also checked the con-
dition (13) a posteriori, using the values of � and D�
obtained by means of our method. The lhs of Eq. (13) is
again about 2 s.

Let us now discuss the temporal evolution of near-
membrane layers in the long time approximation.
Substituting the solution (12) into Eq. (2), we get the
equation which simplifies to

H1 0
1 1

��
������������
D�t

�p

�
2=�

��������1

0

1
2
�

�

�

�
2

: (14)

One observes that Eq. (14) is solved by

��t� � A��;D�; 
�t
�=2: (15)

The near-membrane layer (15) does not depend on the
parameters b1 and b2 while the coefficient A can be re-
calculated into the diffusion constant D� as

D� �
A2

��H1 0
1 1�

1��
2 j 10
1
2
�
���

: (16)

We have also studied the near-membrane layers beyond
the long time approximation using the boundary conditions
(8) and (9). The condition (8) allows for the analytic treat-
ment of Eq. (3) and the solution is of the form (12) with
2b1=�b1  b2� replaced by 1 �. Thus, the formulas de-
rived in the long time approximation are exact for Eq. (8).
When Eq. (9) is used as the boundary condition, the
solution of subdiffusion equation (3) for x > 0 is
2-3



FIG. 3. The experimentally measured � divided by the coeffi-
cient A from Eq. (15). The symbols are assigned as in Fig. 2 and
the line represents the function t0:45. For clarity of the plot the
error bars are not shown.
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C�x; t� �
C0

�

X1
n�0

	


x
2�

� �������
D�

p

x

�
2=�



n

�H1 0
1 1

��
x2

D�t�

�
1=�

�������� 1

n�2�  1�

1
2
�

�

: (17)

The solutions (12) and (17), which for normal diffusion
have been discussed in [10,11], qualitatively differ from
each other, but the differences are evident only for times
which are significantly longer than those studied here.

Since the formula (17) is analytically intractable we
have found the time evolution of the near-membrane layer
numerically. As discussed in detail in [5], we have not
found any difference between the near-membrane layer
obtained for the concentration profile with the boundary
condition (8) and with the boundary condition (9).

Fitting the experimental ��t� by the function At, we
have found the index � � 2 � 0:90� 0:01. It does not
much differ from unity, but it signals subdiffusion due to
the small error [5]. With the numerical values of inverse
Fox functions, we recalculate the coefficient A into D� by
means of the relation (16). Thus, we get D0:90 � �9:8�
1:0� � 104 �mm2=s0:90� for glucose and D0:90 � �6:3�
0:9� � 104 �mm2=s0:90� for sucrose.

To be sure that Eq. (15), which is used to evaluate D�,
properly describes the experimental ��t�, we have checked
the scaling of ��t� suggested by Eq. (15). In Fig. 3 we plot
the rescaled near-membrane layer �0�t� � ��t�=A, with A
from Eq. (15), for all values of 
, for glucose and for
sucrose. The experimental points are represented as in
Fig. 2. As seen, our experimental data are very well de-
scribed by the function t0:45.

Our method to determine the parameters of subdiffusion
relies on the near-membrane layers. One may ask why �
17060
and D� are not extracted directly from the concentration
profiles which are measured. There are three reasons to
choose the near-membrane layers: experimental, theoreti-
cal, and practical: (i) Measurement of � does not suffer
from the sizable (�10%–15%) systematic error of absolute
normalization of C, as only the relative concentration
matters for �. (ii) Computed concentration profiles depend
on the adopted boundary condition at a membrane while
the condition is not well established even for the normal
diffusion. The near-membrane layer appears to be free of
this dependence. (iii) When C is fitted by a solution of the
subdiffusion equation, there are three free parameters: �,
D�, and the parameter characterizing the membrane per-
meability. Because these fit parameters are correlated with
each other, it is very difficult to get their unique values.
When � is studied the membrane parameter drops out
entirely, � is controlled by the time dependence of ��t�,
while D� is provided by the coefficient A.

The membrane plays only an auxiliary role in our
method to measure the subdiffusion parameters, but the
transport in membrane systems is of interest in several
fields of technology [12], where the membranes are used
as filters, and biophysics [13], where the membrane trans-
port plays a crucial role in the cell physiology. The diffu-
sion in a membrane system is also interesting by itself as a
nontrivial stochastic problem; see, e.g., [10]. Thus, our
study of the subdiffusion in a membrane system, which
to our best knowledge has not been investigated by other
authors, opens up a new field of interdisciplinary research.
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