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Damping of a Unitary Fermi Gas
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We measure the temperature dependence of the radial breathing mode in an optically trapped, unitary
Fermi gas of 6Li, just above the center of a broad Feshbach resonance. The damping rate reveals a clear
change in behavior which we interpret as arising from a superfluid transition. We suggest pair breaking as
a mechanism for an increase in the damping rate which occurs at temperatures well above the transition. In
contrast to the damping, the frequency varies smoothly and remains close to the unitary hydrodynamic
value. At low temperature T, the damping depends on the atom number only through the reduced
temperature, and extrapolates to 0 at T � 0.
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Optically trapped, unitary Fermi gases [1,2] test predic-
tions for exotic systems, from nuclear matter [3–5] and
quark-gluon plasmas [6] to high temperature superconduc-
tors [7]. In a unitary Fermi gas, pair interactions between
particles are ‘‘strong’’ in the sense that the zero-energy
scattering length is much greater than the interparticle
spacing, as achieved by tuning near a Feshbach resonance
[1]. Such a gas is believed to exhibit universal features,
independent of the microscopic details of the interaction
[1,3,8]. At sufficiently low temperatures, unitary Fermi
gases comprise normal atoms, noncondensed pairs, and
condensed superfluid pairs [9,10]. Fermionic atom pairs
are probed in projection experiments [11–13] and in mea-
surements of the pairing gap [14,15]. The anisotropic
expansion of a unitary gas [1] and the breathing mode
frequencies and damping rates [16–18] provide evidence
for superfluid hydrodynamics. Recent measurements of the
heat capacity of a unitary gas reveal a transition at a certain
temperature [10,19], which has been interpreted as the
onset of superfluidity [9,10]. However, in collective mode
measurements, a well-defined transition temperature has
not been identified, and the scaling of the superfluid damp-
ing rate with temperature has not been established. Further,
measurements above the transition temperature may deter-
mine if the normal phase behaves as a normal Fermi liquid,
a normal Fermi gas, or something else.

In this Letter, we report a comprehensive study of the
radial breathing mode for a unitary Fermi gas of 6Li. We
measure the frequency and damping rate as a function of an
empirical temperature ~T. We observe a transition in the
behavior of the damping rate at ~T � 0:5, corresponding to
a reduced temperature of T=TF � 0:35. Below ~T � 0:5,
we observe linear scaling of the damping rate with empiri-
cal temperature. The rate extrapolates to zero at zero
temperature, as expected for a superfluid. Above ~T �
0:5, the behavior deviates strongly from linear scaling.
The transition is not accompanied by an abrupt change of
the frequency, which remains close to the unitary hydro-
dynamic value. For ~T � 1:0, the behavior of the frequency
and damping rate is difficult to interpret in terms of binary
collisional dynamics or trap anharmonicity. We discuss a
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possible explanation in terms of the breaking of noncon-
densed pairs.

In the experiments, we prepare a degenerate 50-50 mix-
ture of the two lowest spin states of 6Li atoms by forced
evaporation [1] in an ultrastable CO2 laser trap [20]. At a
bias magnetic field B of 840 G, just above the center of the
Feshbach resonance [21,22], the trap depth is lowered by a
factor of ’ 580 in a few seconds [1,16] and then recom-
pressed to 4.6% (for most of the experiments) of the
maximum trap depth in 1.0 s and held for 0.5 s to assure
equilibrium. To increase the temperature, a controlled
amount of energy is added to the gas by releasing the
atoms from the trap for a short time and then recapturing
the cloud [10,19]. The gas is then allowed to thermalize for
0.1 s.

The radial breathing mode is excited by releasing the
cloud and recapturing the atoms after 25 �s (for 4.6% of
the maximum trap depth). After the excitation, we let the
cloud oscillate for a variable time thold, at the end of which
the gas is released and imaged after ’ 1 ms of expansion
[16].

Radial breathing mode frequencies ! and damping
times 	 are determined from the oscillatory dependence
of the released cloud size on thold [16–18]. For each
temperature, 60-90 values of thold are chosen in the time
range of interest. These values of thold are randomly or-
dered during data acquisition to reduce systematic error.
Three full sequences are obtained and averaged. The aver-
aged data is fit with a damped sinusoid x0 �
A exp��t=	� sin�!t� ’�. We have obtained oscillation
curves at 30 different temperatures, containing data from
6300 repetitions of the experiment.

For most of the data reported, the total number of atoms
is N � 2:0�0:2� � 105. From the measured trap frequen-
cies, corrected for anharmonicity, we obtain for 4.6% of
the maximum trap depth: !? �

������������!x!y
p

� 2��

1696�10� Hz, !x=!y � 1:107�0:004�, and !z �

2�� 71�3� Hz, so that �! � �!x!y!z�
1=3 � 2��

589�5� Hz is the mean oscillation frequency and � �
!z=!? � 0:045 is the anisotropy parameter. The typical
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FIG. 1. Frequency ! versus empirical reduced temperature ~T.
Open circles: measured frequencies; Black dots: after correction
for anharmonicity using a finite-temperature Thomas-Fermi
profile. The dot-dashed line is the unitary hydrodynamic fre-
quency !H �

�����������
10=3

p
!?. The dashed line at the top of the scale

is the frequency 2!x observed for a noninteracting gas at the
lowest temperatures.
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Fermi temperature TF � �3N�1=3 �h!=kB of a correspond-
ing noninteracting gas is ’ 2:4 �K, small compared to the
final trap depth of U0=kB � 35 �K (at 4.6% of maximum
depth). The coupling parameter of the strongly interacting
gas at B � 840 G is kFa ’ �30:0, where �hkF �������������������

2mkBTF
p

is the Fermi momentum, and a � a�B� is the
zero-energy scattering length estimated from Ref. [21].

The dimensionless empirical temperature ~T is deter-
mined by the method implemented in [10,19]: The column
density of the cloud is spatially integrated in the axial
direction to yield a normalized (integrates to 1), one-
dimensional, transverse spatial distribution n�x�. This dis-
tribution is fit to determine the empirical reduced tempera-
ture ~T using a finite-temperature Thomas-Fermi profile
with a fixed Fermi radius, which is measured in a separate
experiment at the lowest temperatures [10,19]. The empiri-
cal temperature ~T is numerically calibrated to the theoreti-
cal reduced temperature T=TF [9,10]. In Ref. [10], we
show that a simple approximation relating ~T to T=TF is
given by

~T ’ ~Tnat �
T

TF
�������������
1 � �

p : (1)

Equation (1) yields accurate values of T=TF for ~T � 0:45
and provides a reasonable estimate at lower temperatures,
where higher precision can be obtained using the calibra-
tion [10,23]. Here � is the unitary gas parameter
[1,3,5,24,25], which we recently measured to be � �
�0:49�0:04� (statistical error only) [10,19].

The mode frequency provides important information on
the state of the system. The frequency versus the empirical
temperature for experiments at 4.6% of maximum trap
depth is shown in Fig. 1. The figure shows the measured
frequencies !meas (open circles), uncorrected for anharmo-
nicity in the trapping potential, as well as the frequencies
after correction (solid dots).

The frequency correction is proportional to the ratio
h�4i=h�2i [26], where � is the transverse radius of the
expanded cloud. For a unitary gas under isentropic con-
ditions, we obtain [27]

! � !meas

�
1 �

8

15

m!2
x

U0

hx4i

hx2ib2
x

�
: (2)

Here, we have assumed that the spatial profile is cigar
shaped, with �!x �!y�

2=!2
? � 1, and that the breathing

mode is observed in the x direction, where hx2i is the mean
square width of the cloud after the expansion by a scale
factor bx [1,28]. For 1 ms of hydrodynamic expansion [29],
we find bx�1 ms� � 13:3.

We determine the ratio hx4i=hx2i directly from the mea-
sured spatial distributions, by fitting with one-dimensional
finite-temperature Thomas-Fermi profiles. The corrected
frequencies are displayed in Fig. 1 as solid dots. The
frequency error arising from uncertainty in the correction
is estimated to be comparable to the statistical error.
17040
The radial breathing frequency varies smoothly over the
whole temperature range, and remains close to the value
!H �

�����������
10=3

p
!? � 1:83!? predicted by hydrodynamic

theory for a unitary gas, where 1=�kFa� � 0 [31–37].
Such temperature independence has been observed previ-
ously in a Bose-Einstein condensate (BEC) [38]. We find
that the corrected frequencies are far from 2!x � 2:10!?,
the value observed for a noninteracting gas at the lowest
temperatures (dashed line at the top of Fig. 1).

In contrast to the frequency, the damping rate, Fig. 2,
reveals a transition in behavior as ~T is increased from 0. For
~T & 0:5, the damping rate varies linearly with ~T [23]. A
linear fit for this temperature range yields

1

	!?

� 0:146�0:004� ~T � 0:0015�0:0014�; (3)

for the main data set which is taken at 4.6% of maximum
trap depth and N � 2 � 105 atoms. The damping rate
extrapolates close to zero at zero temperature, similar to
that observed in the radial breathing mode of a BEC [38].
The hydrodynamic frequency and decrease in damping
with decreasing ~T are inconsistent with expectations for
a collisionally hydrodynamic gas [for binary collisions,
1=	 / �T=TF�

�2] [16,30,39,40], and are consistent with a
Fermi superfluid [16].

Above ~T � 0:5, the damping rate departs strongly from
linear scaling with ~T. We interpret this behavior as a
signature of a phase transition. Using Eq. (1), we find
that ~T � 0:5 corresponds to T � 0:35TF. This is somewhat
higher than the temperature T � 0:27TF where a transition
is observed in the heat capacity, after temperature calibra-
tion [10]. However, it is not clear that the observed change
4-2
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FIG. 2 (color online). Temperature dependence of the damping
rate for the radial breathing mode of a trapped 6Li gas at 840 G,
showing a transition in behavior. Solid dots are the main data set
taken at 4.6% of maximum trap depth and N � 2:0�0:2� � 105.
The dashed line is Eq. (3) which extrapolates close to zero at
zero temperature.
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in the behavior of the damping rate should occur at pre-
cisely the same temperature as for the change in heat
capacity. The two measurements are in reasonable agree-
ment with recent predictions for the superfluid transition
temperature, Tc � 0:29TF [10] and 0:31TF [41].

There appears to be a notch in the damping rate near
~T � 0:6. The three data points in the notch are taken
together with points above and below the notch, and dem-
onstrate reproducible reduction in the damping rate. The
three points in the notch fall 2.2–4.1 standard errors below
the linear extrapolation at ~T � 0:6. By contrast, for the
eight points to the left of the notch, the average magnitude
of the deviation from linear scaling is 0:3 standard error.
This unexpected feature merits further investigation.

For the data points in the range 0:65 � ~T � 1:0, i.e., for
0:45 < T=TF < 0:71, the damping rate appears to be
nearly independent of ~T. The damping increases for 1:0 �
~T � 1:2, i.e., from 0:71 � T=TF � 0:86, and then appears
to become nearly temperature independent with further
increase in ~T.

We have examined several scenarios for the behavior of
the damping rate for ~T � 1:0, i.e., T=TF � 0:71. The
observed damping rates and frequencies appear to be in-
consistent with expectations for binary collisions in a
normal Fermi gas: Predictions [40] indicate that the damp-
ing above T=TF � 0:7 should be varying slowly (on the
scale of TF) and decreasing with temperature in this re-
gime. The observed frequency is close to the hydrody-
namic value. In contrast, the predicted frequency is close
to the noninteracting gas value, 2!x, because the momen-
tum relaxation rate predicted by the binary collision model
is too small.
17040
The observed maximum damping rate above ~T � 1:2 is,
however, close to the maximum value for a general relaxa-
tion model [30], which occurs in the regime where the gas
changes from collisional to collisionless. We find
1=�!?	�max is 1=

��������
120

p
’ 0:09 for exact cylindrical sym-

metry, and 0.13 for our trap [29].
If anharmonicity in the trapping potential were causing

the increase in damping rate with temperature, 1=	 would
be proportional to the frequency correction, i.e.,
1=�!?	� / m!2

?hx
2i=U0 / kBT=U0. Then, for our trap

conditions, the damping rate would increase rapidly for
all ~T � 1:0, in contrast to observations.

The breaking of noncondensed pairs may contribute to
the increase in the damping rate as the temperature is
increased. Pair breaking has been suggested [17] as a
mechanism for enhanced damping which is observed at
magnetic fields above the Feshbach resonance, where the
coupling is reduced and the trap-averaged pairing gap h!i
decreases below the radial breathing mode excitation en-
ergy �h! [17,18]. A recent prediction [42] shows that h!i ’
�h! for ~T ’ 0:1 (T=TF � 0:12), B � 1080 G (1=kFa �
�0:74), and �h! � 0:06kBTF, the conditions where we
have observed enhanced damping [18]. This is consistent
with the pair-breaking hypothesis. We find that the region
of increasing damping in the current experiments, 0:71 �
T=TF � 0:86, is close to the temperature range estimated
for the vanishing of noncondensed pairs in a unitary gas
[9,10,19]. Indeed, a prediction of the trap-averaged gap for
a unitary gas [42] shows that h!i � �h! for T � 0:75TF
( ~T � 1:06).

We have investigated the possibility that the observed
variation of the damping rate with temperature might arise
in part from oscillations of different components of the gas
at different frequencies. In a Bose-Einstein condensate
with a thermal cloud, numerical simulations predict reviv-
als of the net oscillation amplitude, altering the apparent
decay rates [43]. In the present experiments, we find no
evidence for such revivals, even after increasing the time
over which the decay of the mode is observed.

We have examined the dependence of the damping rate
on the trap oscillation frequency !? and on the number of
atoms N, Fig. 3. Dimensional analysis requires that 1=	 �
!?f�T=TF;N; ��, where f is a dimensionless function.

For fixed T=TF (or fixed ~T), we find that the function f
cannot have a strong number dependence for ~T < 0:5. For
example, it cannot be / kBTF=� �h!?� / N1=3 or its inverse,
since the damping rate at 4.6% of maximum trap depth
does not change significantly when the number is reduced
by a factor of ’ 3: The damping rate at reduced numbers,
open circles in Fig. 3, lies very close to the main data set
(dashed line) when plotted versus ~T. Hence, it is likely that
1=	 depends on N only via the combination T=TF, and the
most general formula for 1=	 is then limited to

1

	
� !?f

�
T
TF

; �
�
: (4)
4-3



0.05

0.00

1/
τω

⊥
 

0.40.20.0 T
~

FIG. 3 (color online). Damping rate for the system with scaled
parameters: Two solid squares: at 0.85% of maximum trap depth;
Four open diamonds: at 19% of maximum trap depth; Two open
circles: at 3 times smaller number of atoms and 4.6% of
maximum trap depth. The dashed line is Eq. (3) which extrapo-
lates close to zero at zero temperature.
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Experimentally, we are not able to test whether the damp-
ing rate depends on �. We have verified that 1=	 versus ~T
scales approximately as !? by monitoring the breathing
mode in the trap at 0.85% of full depth (!? � 728�4� Hz,
squares in Fig. 3) and at 19% (!? � 3343�20� Hz, dia-
monds). In both cases, 1=�!?	� is close to that of the main
data set.
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