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Photon Recoil Momentum in Dispersive Media
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A systematic shift of the photon recoil momentum due to the index of refraction of a dilute gas of atoms
has been observed. The recoil frequency was determined with a two-pulse light grating interferometer
using near-resonant laser light. The results show that the recoil momentum of atoms caused by the
absorption of a photon is n �hk, where n is the index of refraction of the gas and k is the vacuum wave vector
of the photon. This systematic effect must be accounted for in high-precision atom interferometry with
light gratings.
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FIG. 1. Kapitza-Dirac interferometer. The first pulse out-
coupled a small fraction of atoms into the j � 2n �hki momentum
states. The outcoupled atoms moved within the initial conden-
sate. After a variable delay �, a second pulse was applied, and
atoms outcoupled by the second pulse interfered with those
outcoupled by the first pulse. The laser beam was applied
perpendicular to the long axis of the condensate; the polariza-
tion, ~E, was parallel to it and to the applied magnetic field bias,
~B. The atoms were imaged after 38 ms of ballistic expansion.
The field of view is 0:5 mm� 1:5 mm.
The momentum of a photon in a dispersive medium is of
conceptual and practical importance [1–6]. When light
enters a medium with an index of refraction n, the elec-
tromagnetic momentum is modified [3–5]. Momentum
conservation requires then that the medium also has a
mechanical momentum. When a pulse of light enters the
medium, the particles in the medium are accelerated by the
leading edge of the pulse and decelerated by the trailing
edge [5]. As a result, no motion is left in the medium after
the pulse has passed. When light is absorbed or reflected in
the medium, the momentum transfer occurs in units of �hk
or n �hk, where k is the vacuum wave vector. An absorbing
surface is equivalent to photons leaving the medium with-
out reflection and would therefore receive a momentum of
�hk per incident photon. In contrast, as shown in Ref. [5], a
reflecting surface within the medium will recoil with a
momentum of 2n �hk per photon. In this case, the standing
wave formed by the incident and reflected light pulse
transfers momentum to the medium which remains even
after the light pulse has left. This modification of the recoil
momentum has so far been observed only for light being
reflected from a mirror immersed in a liquid [7,8].

Recently, there have been discussions about what hap-
pens when an atom within an atomic cloud absorbs a
photon. If one assumes that after absorbing the photon,
no motion is left in the medium, then the recoil momentum
should be �hk [9]. The same conclusion is reached when one
assumes a very dilute, dispersive medium with the absorb-
ing atom localized in the vacuum space between the par-
ticles of the medium [10]. However, Ref. [6] argues that the
atom will recoil with a momentum of n �hk, which requires
particles in the medium to receive a backward momentum
(for n > 1) due to the interaction of the oscillating dipole
moments of the particles in the dispersive medium and the
absorbing atom. So both for reflection by a mirror and
absorption by an atom, a photon in a dispersive medium
behaves as if it has a momentum of n �hk.

In this Letter, we examine this issue experimentally,
showing that the atom recoils with momentum n �hk. This
05=94(17)=170403(4)$23.00 17040
has important consequences for atom interferometers using
optical waves to manipulate atoms by the transfer of recoil
momentum. High-precision measurements of the photon
recoil are used to determine the fine-structure constant �
[11–16]. Further improvements in the accuracy of photon
recoil measurements, combined with the value of� derived
from the (g� 2) measurements for the electron and posi-
tron [17–19], would provide a fundamental test of QED. At
low atomic densities, where atom interferometers usually
operate, the index of the refraction effect is relatively
small. However, the accuracy of the best photon recoil
measurements is limited by the uncertainty in the correc-
tion to the photon recoil due to the index of refraction. Here
we operate an atom interferometer with Bose-Einstein
3-1  2005 The American Physical Society
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FIG. 2. Interference fringes oscillating at the recoil frequency.
(a) Absorption images for � � 10–50 �s. The detuning was
�=2� � 
520 MHz. The field of view is 0:5 mm� 1:5 mm.
(b) Fraction of atoms in the j0 �hki momentum state as a function
of �. The fringes were fit using Eq. (1). The fitted frequency was
! � 2�� 15 627	39� Hz with decay constant �c �
461	25� �s. The signal was normalized using the total atom
number in all momentum states. The systematic scatter of the
data from the fit indicates the reproducibility of the single shot
measurements.
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condensates, which have a much higher density than laser
cooled atomic clouds, and observe how the index of re-
fraction modifies the atomic recoil frequency �h!rec �

�h2k2
2m ,

where m is the atomic mass.
The essential idea of our experiment is to measure the

recoil frequency interferometrically using a two-pulse
Ramsey interferometer. The two pulses are optical stand-
ing waves separated by a delay time � (Fig. 1). The first
pulse diffracts the atoms in a 87Rb condensate into discrete
momentum states. During the delay time � the phase of
each momentum state evolves at a different rate according
to its recoil energy. The second pulse recombines the atoms
with the initial condensate. The recombined components
have differing phases leading to interference fringes that
oscillate at the two-photon recoil frequency. By measuring
the resulting frequency, ! as a function of the standing
wave detuning from the atomic resonance, we found a
distinctive dispersive shape for ! that fits the recoil mo-
mentum as n �hk.

The experiment was performed using an elongated 87Rb
Bose-Einstein condensate (BEC) created in a cloverleaf-
type Ioffe-Pritchard magnetic trap previously described in
Ref. [20]. The condensate, containing 1:5� 106 atoms,
was produced in the j5 2S1=2; F � 1; mF � �1i state, and
had a Thomas-Fermi radius of 8 (90) �m in the radial
(axial) direction, and the magnetic trap had a radial (axial)
trap frequency of 81 (7) Hz.

The BEC was illuminated with an optical standing wave
created by a retroreflected, �-polarized laser beam. Losses
in the retroreflected beam were negligible. The polariza-
tion of the beam was optimized by suppressing Rayleigh
superradiance [20]. The laser was detuned from the
5 2S1=2; F � 1 ! 5 2P3=2; F � 1 transition at � �

780 nm, and had a linewidth � much smaller than �, the
natural linewidth of the transition. The intensity of the 5 �s
long pulse was set to outcouple � 5% of the atoms into
each of the j � 2n �hki momentum states with no appre-
ciable population in higher momentum states. This ensured
that the density of the original condensate was nearly
constant throughout the measurement. After a variable
time �, a second identical pulse was applied. The time
between the first pulse and the shutoff of the magnetic trap
was fixed at 600 �s, which was less than a quarter of the
radial trap period. The momentum distribution of the con-
densate was imaged after 38 ms of ballistic expansion, long
enough for the momentum states to be resolved. The
images were obtained using resonant absorption imaging
after first optically pumping the atoms to the 5 2S1=2; F � 2

state. To measure the effect of spontaneous light scattering
from the standing wave, the density of the condensate (and
associated mean-field shift) was determined after applying
a single 5 �s pulse to the condensate, and then immedi-
ately releasing it from the magnetic trap. The number of
atoms in the condensate was determined by integrating the
optical density of the absorption image, which in turn was
17040
calibrated by fitting the Thomas-Fermi radius of unper-
turbed condensates in time of flight [21].

The recoil frequency was found by fitting the oscilla-
tions in the fraction of atoms in the j0n �hki momentum state
as a function of the delay � (Fig. 2) with a cosine function
and a Gaussian envelope:

A exp
�
�
�2

�2c

�
cos	!�
�� 
 C: (1)

The observation of up to ten oscillations provided a precise
value of the recoil frequency. The origin of the damping
time �c and of the offset C will be discussed later.

Figure 3 shows our measured values for !=2� as a
function of the detuning, �=2�. The measured values for
the frequency clearly follow the dispersive shape of the
index of refraction. The variation in !=2� as a function of
the detuning was 2 kHz across the resonance, much larger
than the statistical error on the frequency fits of less than
100 Hz. This conclusively shows that the momentum trans-
ferred to the atom when a photon is absorbed is n �hk.

We now discuss in more detail how the atoms interact
with optical standing waves. For the short duration of the
applied pulses (5 �s) we can assume that the atoms do not
move during the pulse and ignore the kinetic energy of the
atoms (Raman-Nath approximation). The interaction can
then be described by the application of the ac Stark poten-

tial due to the standing wave V	z� � �h!2
R

� sin2	nkz�, where
3-2
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FIG. 3. Recoil frequency as a function of detuning, �=2�,
showing the dispersive effect of the index of refraction. The
average density of the condensate for the solid points was
1:14	4� � 1014 cm�3, giving rise to a mean-field shift of
880 Hz. The shaded area gives the expected recoil frequency
including the uncertainty in the density. The dashed line is at
! � 4!rec 
 'U= �h, the expected value without index of refrac-
tion effects. The dotted line is at 4!rec � 15 068 Hz, the two-
photon vacuum recoil frequency. The data shown as open dia-
monds had increased spontaneous light scattering due to /�

light contamination in the laser beam. The increased light
scattering led to a lower initial density in the condensate, thus
leading to a smaller mean-field shift. The /� contamination
allowed �mF � �1 transitions, thus for small detunings the
proximity to the j1;�1i ! j00; 0i transition located at �=2� �
�72 MHz resulted in higher spontaneous scattering rates. The
open points have been scaled upward to correct for this lower
density.
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� is the detuning between the optical frequency and the
atomic transition, and !R is the Rabi frequency. This
equation is valid for large detuning, �2 � �2=4. The short
pulse limit, describing Kapitza-Dirac scattering, is valid
for short interaction times tp  1=!rec � 40 �s. The first
pulse outcouples a fraction of atoms into the momentum
states j � 2‘n �hki, where the population in the ‘th momen-
tum state is given by P‘ � J2‘	!� [22,23], where for a

square pulse, ! �
!2

Rtp
2� , and J‘ is the ‘th-order Bessel

function of the first kind. For ! < 1 a negligible fraction
of atoms is diffracted into states with ‘ > 1, and we can
restrict our discussion to the j � 2n �hki states. For our
experimental parameters ! � 0:45. During the delay time
� the phase of the j � 2n �hki states evolves at a faster rate
than the j0n �hki state due to the recoil energy, Erec �
4n2 �h!rec; hence, the wave function evolves as

j 	��i � j oi�J1	!�j � 2n �hkie�i4n
2!rec� 
 J0	!�j0n �hki�:

(2)

At t � � a second pulse is applied that partially recombines
the momentum states. After applying the two pulses, the
probability of finding the atoms in the j0n �hki state, '0 �

jh 	�
 tp�j0n �hkij2, is given by
17040
'0 � J40	!� 
 4�J20	!�J
2
1	!� 
 J41	!�� cos	4n

2!rec��: (3)

As a function of � the density of the zero momentum peak
oscillates at 4n2!rec.

So far, we have ignored the motion of the atoms during
the delay time �. The amplitudes of the recombined com-
ponents interfere only where they spatially overlap. After
the first pulse, the atoms in the j � 2n �hki states move with
the recoil velocity (vrec � 12 �m=ms). As the overlap
between the recoiling atoms and those at rest decreases,
the interference fringes decay. The overlap integral for this
decay is approximated as a Gaussian with time constant,
�c � 0:75RTF=vrec, where RTF is the Thomas-Fermi radius
of the condensate [24].

The index of refraction for the condensate is derived
from its macroscopic polarization P. For a two level sys-
tem, P � *+oE � i' �2

�h
E

��i� , where * is the atomic sus-
ceptibility, +o is the permittivity of free space, � is the
dipole matrix element, ' is the atomic density of the
condensate. In this experiment the light was � polarized
and detuned by � from the 5 2S1=2; F � 1 ! 5 2P3=2; F

0 �

1 transition. For this polarization the selection rule is
�mF � 0, and there are two allowed transitions from jF �
1; mF � �1i ! j10;�1i and j1;�1i ! j20;�1i that are
separated by 157 MHz. Including both transitions in the
derivation, the index of refraction, n �

�������������
1
 *

p
, is given

by

n�

���������������������������������������������������������������������������������������������������
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(4)

where �1 and �2 are the detunings relative to the F � 1 !
F0 � 1 and F0 � 2 transitions, respectively. This equation
is valid in the limit '�3  1 [25], where � � �=2�. For
our experimental parameters '�3 � 0:2. In addition to the
index of refraction shift, the observed recoil frequency has
a mean-field shift [26]; the atoms in the j � 2n �hki state
have twice the mean-field energy of those at rest due to the
exchange term in the interatomic potential. Including both
the mean-field shift and the index of refraction, the fre-
quency of the observed interference fringes should be

! � 4n2!rec 

'U
�h
; (5)

where 'U � 4� �h2a'=m, and a is the s-wave scattering
length. The density ' � 	4=7�'o, where 'o is the peak
condensate density and the factor of 4=7 is due to the
inhomogeneous condensate density.

When the interference fringes were fit using Eq. (1), the
average values for the amplitude A and offset C for all of
the data points were 0.12(3) and 0.82(4), respectively. This
is in reasonable agreement with the expected values of A �
0:18 and C � 0:81 for ! � 0:45. For a Thomas-Fermi
radius of 8 �m we would expect a decay time �c �
500 �s. There was an unexplained shift in the fitted value
3-3
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for �c between the red and blue side of the resonances: on
the red side the average value was 347	20� �s and on the
blue, 455	40� �s.

The quadratic dependence in Eq. (5) on the index of
refraction can be understood by considering the diffraction
of atoms from the light grating created by the standing
wave. When the first pulse is applied, the standing wave
creates a grating with a periodicity d � �=2. Within the
condensate the index of refraction modifies the grating
period by n, since �0 � �=n. The momentum of atoms
that diffract off the grating is changed by �2 �hk0, again
within the condensate k0 � nk, and the velocity of the
atoms is modified. Assuming n > 1, when the second
grating is applied the atoms have moved farther by a factor
of n and the grating is shorter by n, changing the time scale
for the interference fringes by a factor of n2.

The increase in the momentum transferred to the atoms
can also be explained by considering the momentum trans-
ferred to atoms by a classical field. A derivation using the
Lorentz force applied to the atoms during the absorption of
a photon can be found in [6]. In a dielectric medium with
n > 1, the magnetic field and therefore the Lorentz force
are not modified. However, the electric field is weaker, and
therefore it takes longer for the atom to perform half a Rabi
cycle and be transferred to the excited state. During that
longer time, the Lorentz force imparts a momentum to the
atom which is larger than �hk.

For Kapitza-Dirac scattering, atoms are diffracted sym-
metrically into the j � 2‘n �hki momentum states, so mo-
mentum is clearly conserved. However, for processes such
as Bragg scattering, where the atoms are scattered in only
one direction, the index of refraction has an additional
effect. Assuming a �=2 pulse with counterpropagating
beams, where half the atoms are diffracted, for n > 1 the
recoil momentum is a factor of n higher than in vacuum.
For momentum to be conserved, the remaining atoms must
recoil backwards with momentum p � 2	n� 1�‘ �hk. For
small fractional outcoupling the effect is negligible, since
the extra momentum is distributed among the remaining
condensate. However, if a large fraction of the condensate
is outcoupled and ‘ is large, this effect could potentially be
resolved in ballistic expansion.

We have discussed here the dispersive effect on the
photon momentum near a one-photon resonance. An analo-
gous effect occurs near two-photon resonances. In this
case, the atomic polarizability is determined in third-order
perturbation theory, and the resulting index of refraction
has a sharp, narrow dispersive feature near the two-photon
resonance [27]. In recent experiments at Stanford [13],
such two-photon effects have been the leading source of
uncertainty in high-precision determinations of atomic
recoil frequencies and the fine-structure constant �.

In conclusion, we have measured a systematic shift in
the photon recoil frequency due to the index of refraction
of the condensate. This is the first direct observation of the
17040
atomic recoil momentum in dispersive media. For high
atomic densities, this shift can have a significant effect
on atom interferometers, and is of particular importance
for precision measurements of h=m and � with cold atoms
[13,16].
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