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Quantum Monte Carlo simulations, while being efficient for bosons, suffer from the ‘‘negative sign
problem’’ when applied to fermions—causing an exponential increase of the computing time with the
number of particles. A polynomial time solution to the sign problem is highly desired since it would
provide an unbiased and numerically exact method to simulate correlated quantum systems. Here we show
that such a solution is almost certainly unattainable by proving that the sign problem is nondeterministic
polynomial (NP) hard, implying that a generic solution of the sign problem would also solve all problems
in the complexity class NP in polynomial time.
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Half a century after the seminal Letter of Metropolis
et al. [1] the Monte Carlo method has widely been estab-
lished as one of the most important numerical methods and
as a key to the simulation of many-body problems. Its main
advantage is that it allows phase space integrals for many-
particle problems, such as thermal averages, to be eval-
uated in a time that scales only polynomially with the
particle number N although the configuration space grows
exponentially with N. This enables the accurate simulation
of large systems with millions of particles.

Monte Carlo simulations of quantum systems, such as
fermions, bosons, or quantum spins, can be performed
after mapping the quantum system to an equivalent classi-
cal system. For fermionic or frustrated models this map-
ping may yield configurations with negative Boltzmann
weights, resulting in an exponential growth of the statisti-
cal error and hence the simulation time with the number of
particles, defeating the advantage of the Monte Carlo
method. A polynomial time solution of this ‘‘sign prob-
lem’’ of negative weights would revolutionize electronic
structure calculations by providing an unbiased and
approximation-free method to study correlated fermionic
systems. This would be of invaluable help, for example, in
finding the mechanism for high-temperature superconduc-
tivity or in determining the properties of dense nuclear
matter and quark matter.

The difficulties in finding polynomial time solutions to
the sign problem are reminiscent of the apparent impos-
sibility to find polynomial time algorithms for nondeter-
ministic polynomial (NP) complete decision problems,
which could be solved in polynomial time on a hypotheti-
cal nondeterministic machine, but for which no polyno-
mial time algorithm is known for deterministic classical
computers. A hypothetical nondeterministic machine can
always follow both branches of an if statement simulta-
neously, but can never merge the branches again. It can,
equivalently, be viewed as having exponentially many
processors, but without any communication between
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them. In addition, it must be possible to check a positive
answer to a problem in NP on a classical computer in
polynomial time.

Many important computational problems in the com-
plexity class NP, including the traveling salesman problem
and the problem of finding ground states of spin glasses
have the additional property of being NP hard, forming the
subset of NP complete problems, the hardest problems in
NP [2]. A problem is called NP hard if any problem in NP
can be mapped onto it with polynomial complexity.
Solving an NP hard problem is thus equivalent to solving
any problem in NP, and finding a polynomial time solution
to any of them would have important consequences for all
of computing as well as the security of classical encryption
schemes. In that case all problems in NP could be solved in
polynomial time, and hence NP � P.

As no polynomial solution to any of the NP complete
problems was found despite decades of intensive research,
it is generally believed that NP � P and no deterministic
polynomial time algorithm exists for these problems. The
proof of this conjecture remains as one of the unsolved
millennium problems of mathematics for which the Clay
Mathematics Institute has offered a prize of one million
U.S. dollars [3]. In this Letter we will show that the sign
problem is NP hard, implying that unless the NP � P
conjecture is disproven there exists no generic solution of
the sign problem.

Before presenting the details of our proof, we will give a
short introduction to classical and quantum Monte Carlo
simulations and the origin of the sign problem. In the
calculation of the phase space average of a quantity A,
instead of directly evaluating the sum

hAi �
1

Z

X

c2�

A�c�p�c�; Z �
X

c2�

p�c�; (1)

over a high-dimensional space � of configurations c, a
classical Monte Carlo method chooses a set of M configu-
rations fcig from �, according to the distribution p�ci�. The
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FIG. 1 (color online). A configuration of a fermionic lattice
model on a 4-site square. The configuration has negative weight,
since two fermions are exchanged in the sequence ji1i ! ji2i !
ji3i ! ji4i ! ji1i. World lines connecting particles on neighbor-
ing slices are drawn as thick lines.
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average is then approximated by the sample mean

hAi 	 A �
1

M

XM

i�1

A�ci�; (2)

within a statistical error �A �
��������������������������������������
VarA�2
A 
 1�=M

p
, where

VarA is the variance of A and the integrated autocorrelation
time 
A is a measure of the autocorrelations of the se-
quence fA�ci�g. In typical statistical physics applications,
p�c� � exp���E�c�
 is the Boltzmann weight, � �
1=kBT is the inverse temperature, and E�c� is the energy
of the configuration c.

Since the dimension of configuration space � grows
linearly with the number N of particles, the computational
effort for the direct integration Eq. (1) scales exponentially
with the particle number N. Using the Monte Carlo ap-
proach the same average can be estimated to any desired
accuracy in polynomial time, as long as the autocorrelation
time 
A does not increase faster than polynomially with N.

In a quantum system with Hamilton operator H, instead
of an integral like Eq. (1), an operator expression

hAi �
1

Z
Tr�A exp���H�
; Z � Tr exp���H� (3)

needs to be evaluated in order to calculate the thermal
average of the observable A (represented by a self-adjoint
operator). Monte Carlo techniques can again be applied to
reduce the exponential scaling of the problem, but only
after mapping the quantum model to a classical one. One
approach to this mapping [4] is a Taylor expansion [5]:

Z � Tr exp���H� �
X1

n�0

����n

n!
TrHn

�
X1

n�0

X

i1;...;in

����n

n!
hi1jHji2ihi2jHji3i � � � hinjHji1i

�
X1

n�0

X

i1;...;in

p�i1; . . . ; in� �
X

c

p�c�; (4)

where for each order n in the expansion we insert n sums
over complete sets of basis states fjiig. The ‘‘configura-
tions’’ are sequences c � �i1; . . . ; in� of n basis states and
we define the weight p�c� by the corresponding product of
matrix elements of H and the term ����n=n! . With a
similar expansion for Tr�A exp���H�
 we obtain an ex-
pression reminiscent of classical problems:

hAi �
1

Z
Tr�A exp���H�
 �

1

Z

X

c

A�c�p�c�: (5)

If all the weights p�c� are positive, standard Monte Carlo
methods can be applied, as it is the case for nonfrustrated
quantum magnets and bosonic systems. In fermionic sys-
tems [6] negative weights p�c�< 0 arise from the Pauli
exclusion principle, when along the sequence ji1i !
ji2i ! � � � ! jini ! ji1i two fermions are exchanged, as
shown in Fig. 1.
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The standard way of dealing with the negative weights
of the fermionic system is to sample with respect to the
bosonic system by using the absolute values of the weights
jp�c�j and to assign the sign s�c� � signp�c� to the quan-
tity being sampled:

hAi �

P
c
A�c�p�c�
P
c
p�c�

�

P
c
A�c�s�c�jp�c�j=

P
c
jp�c�j

P
c
s�c�jp�c�j=

P
c
jp�c�j

�
hAsi0

hsi0
:

(6)

While this allows Monte Carlo simulations to be per-
formed, the errors increase exponentially with the particle
number N and the inverse temperature �. To see this,
consider the mean value of the sign hsi � Z=Z0, which is
just the ratio of the partition functions of the fermionic
system Z �

P
cp�c� with weights p�c� and the bosonic

system used for sampling with Z0 �
P

cjp�c�j. As the par-
tition functions are exponentials of the corresponding free
energies, this ratio is an exponential of the differences �f
in the free energy densities:hsi � Z=Z0 � exp���N�f�.
As a consequence, the relative error �s=hsi increases ex-
ponentially with increasing particle number and inverse
temperature:

�s
hsi

�

���������������������������������
�hs2i � hsi2�=M

p

hsi
�

�����������������
1� hsi2

p
�����
M

p
hsi

�
e�N�f

�����
M

p : (7)

Similarly the error for the numerator in Eq. (7) increases
exponentially and the time needed to achieve a given
relative error scales exponentially in N and �.

In order to avoid any misconception about what would
constitute a ‘‘solution’’ of the sign problem, we start by
giving a precise definition:
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(i) A quantum Monte Carlo simulation to calculate a
thermal average hAi of an observable A in a quantum sys-
tem with Hamilton operator H is defined to suffer from a
sign problem if there occur negative weights p�c�< 0 in
the classical representation as given by Eq. (5).

(ii) The related bosonic system of a fermionic quantum
system is defined as the system where the weights p�c� are
replaced by their absolute values jp�c�j, thus ignoring the
minus sign coming from fermion exchanges:

hAi0 �
1

Z0

X

c

A�c�jp�c�j: (8)

(iii) An algorithm for the stochastic evaluation of a
thermal average such as Eqs. (5) or (8) is defined to be of
polynomial complexity if the computational time t��;N;��
needed to achieve a relative statistical error � � �A=hAi in
the evaluation of the average hAi scales polynomially with
the system size N and inverse temperature �, i.e., if there
exist integers n and m and a constant � <1 such that

t��; N; ��< ���2Nn�m: (9)

(iv) For a quantum system that suffers from a sign
problem for an observable A, and for which there exists a
polynomial complexity algorithm for the related bosonic
system Eq. (8), we define a solution of the sign problem as
an algorithm of polynomial complexity to evaluate the
thermal average hAi.

It is important to note that we only worry about the sign
problem if the bosonic problem is easy (of polynomial
complexity) but the fermionic problem hard (of exponen-
tial complexity) due to the sign problem. If the bosonic
problem is already hard, e.g., for spin glasses [7], the sign
problem will not increase the complexity of the problem.
Also, changing the representation so that the sum in Eq. (5)
contains only positive terms p�c� � 0 is not sufficient to
solve the sign problem if the scaling remains exponential,
since then we just map the sign problem to another ex-
ponentially hard problem. Only a polynomial complexity
algorithm counts as a solution of the sign problem.

At first sight such a solution seems feasible since the
sign problem is not an intrinsic property of the quantum
model studied but is representation-dependent: it depends
on the choice of basis sets fjiig, and in some models it can
be solved by a simple local basis change [8]. Indeed, when
using the eigenbasis in which the Hamilton operator H is
diagonal, there will be no sign problem. This diagonaliza-
tion of the Hamilton operator is, however, no solution of
the sign problem since its complexity is exponential in the
number of particles N.

We now construct a quantum mechanical system for
which the calculation of a thermal average provides the
solution for one and thus all of the NP complete problems.
This system exhibits a sign problem, but the related bo-
sonic problem is easy to solve. Since, for this model, a
solution of the sign problem would provide us with a
polynomial time algorithm for an NP complete problem,
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the sign problem is NP hard. Of course, it is expected that
the corresponding thermal averages cannot be calculated in
polynomial time and the sign problem thus cannot be
solved. Otherwise we would have found a polynomial
time algorithm for the NP complete problems and would
have shown that NP � P.

The specific NP complete problem we consider [7] is to
determine whether a state with energy less than or equal to
a bound E0 exists for a classical three-dimensional Ising
spin glass with Hamilton function

H � �
X

hj;ki

Jjk�j�k: (10)

Here the spins �j take the values �1, and the couplings Jjk
between nearest neighbor lattice points j and k are either 0
or �J.

This problem is in the complexity class NP since the
nondeterministic machine can evaluate the energies of all
configurations c in polynomial time and test whether there
is one with E�c� � E0. In addition, the validity of a positive
answer (i.e., there is a configuration c) can be tested on a
deterministic machine by evaluating the energy of that
configuration. The evaluation of the partition function Z �P

c exp���E�c�
 is, however, not in NP since the non-
deterministic machine cannot perform the sum in poly-
nomial time.

This question whether there is a state with energy
E�c� � E0 can also be answered in a Monte Carlo simula-
tion by calculating the average energy of the spin glass at a
large enough inverse temperature �. Since the energy
levels are discrete with spacing J it can easily be shown
that by choosing an inverse temperature �J � N ln2

ln�12N� the thermal average of the energy will be less
than E0 
 J=2 if at least one configuration with energy
E0 or less exists, and larger than E0 
 J otherwise [9].

In this classical Monte Carlo simulation, the complex
energy landscape, created by the frustration in the spin
glass [Fig. 2(a)], exponentially suppresses the tunneling of
the Monte Carlo simulation between local minima at low
temperatures. The autocorrelation times and hence the time
complexity of this Monte Carlo approach are exponentially
large 
 / exp�aN�, as expected for this NP complete
problem.

We now map this classical system to a quantum system
with a sign problem. We do so by replacing the classical
Ising spins by quantum spins. Instead of the common
choice in which the classical spin configurations are basis
states and the spins are represented by diagonal �z

j Pauli
matrices we choose a representation in which the spins
point in the �x direction and are represented by �x

j Pauli
matrices:

H � �
X

hj;ki

Jjk�x
j�

x
k: (11)

Here the random signs of the couplings are mapped to
random signs of the off-diagonal matrix elements which
cause a sign problem [see Fig. 2(b)]. The related bosonic
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FIG. 2 (color online). (a) A classically frustrated spin configu-
ration of three antiferromagnetically coupled spins: no configu-
ration can simultaneously minimize the energy of all three
bonds. (b) A configuration of a frustrated quantum magnet
with negative weights: three antiferromagnetic exchange terms
with negative weights are present in the sequence ji1i ! ji2i !
ji3i ! ji1i. Here up spins with z component of spin �z

j � 1 and
down spins with �z

j � �1 are connected with differently colored
world lines.
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model is the ferromagnet with all couplings Jjk � 0 and
efficient cluster algorithms with polynomial time complex-
ity are known for this model [10]. Since the bosonic
version is easy to simulate, the sign problem is the origin
of the NP hardness of a quantum Monte Carlo simulation
of this model. A generic solution of the sign problem
would provide a polynomial time solution to this, and
thus to all, NP complete problems, and would hence imply
that NP � P. Since it is generally believed that NP � P, we
expect that such a solution does not exist.

In conclusion, by constructing a concrete model we have
shown that the sign problem of quantum Monte Carlo
simulations is NP hard. This does not exclude that a
specific sign problem can be solved for a restricted sub-
class of quantum systems. This was indeed possible using
the meron-cluster algorithm [11] for some particular lattice
models. Such a solution must be intimately tied to proper-
ties of the physical system and allow an essentially bosonic
description of the quantum problem. A generic approach
like the cancellation idea [12] might scale polynomially for
some cases but will in general scale exponentially.

It will be interesting to investigate for which classes of
models a partial solution of the sign problem might be
possible using special properties of the model, and to
investigate the important question of whether two-
dimensional fermionic Hubbard models or quantum chro-
modynamics for dense nuclear matter belong to these
classes or not.

In the case of fermions or frustrated quantum magnets,
solving the sign problem requires a mapping to a bosonic
or nonfrustrated system—which is, in general, almost
certainly impossible for physical reasons. The origin of
the sign problem is, in fact, the distinction between bosonic
17020
and fermionic systems. The brute-force approach of taking
the absolute values of the probabilities means trying to
sample a frustrated or fermionic system by simulating a
nonfrustrated or bosonic one. As for large system sizes N
and low temperatures the relevant configurations for the
latter are not the relevant ones for the former, the errors are
exponentially large.

Given the NP hardness of the sign problem one promis-
ing idea for the simulation of fermionic systems is to use
ultracold atoms in optical lattices to construct well-
controlled and tunable implementations of physical sys-
tems, such as the Hubbard model [13], and to use these
‘‘quantum simulators’’ to study the phase diagrams of
correlated quantum systems. But even these quantum
simulators are most likely not a generic solution to the
sign problem since there exist quantum systems with ex-
ponentially diverging time scales and it is at present not
clear whether a quantum computer could solve the NP
complete problems [14].
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